
Satellite Relative Motion Control

for MIT’s SPHERES Program

THESIS

Samuel P. Barbaro, Second Lieutenant, USAF

AFIT/GA/ENY/12-M02

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the United States Air Force, Department of Defense, or the United
States Government. This material is declared a work of the U.S. Government and is
not subject to copyright protection in the United States.

AFIT/GA/ENY/12-M02

Satellite Relative Motion Control

for MIT’s SPHERES Program

THESIS

Presented to the Faculty

Department of Aeronautics and Astronautics

Graduate School of Engineering and Management

Air Force Institute of Technology

Air University

Air Education and Training Command

In Partial Fulfillment of the Requirements for the

Degree of Master of Science in Astronautical Engineering

Samuel P. Barbaro, B.S.

Second Lieutenant, USAF

March 2012

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

AFIT/GA/ENY/12-M02

Satellite Relative Motion Control

for MIT’s SPHERES Program

Samuel P. Barbaro, B.S.

Second Lieutenant, USAF

Approved:

/signed/ 7 Mar 2012

Dr. Richard G. Cobb (Chairman) date

/signed/ 7 Mar 2012

Col. Timothy L. Lawrence, PhD
(Member)

date

/signed/ 7 Mar 2012

LtCol Ronald J. Simmons, PhD
(Member)

date

AFIT/GA/ENY/12-M02

Abstract

Autonomous formation flight concepts and algorithms have great potential to

revolutionize spacecraft operations enabling missions to perform autonomous dock-

ing, in-space refueling, in-space robotic assembly, and space debris removal. Such

tasks require the implementation of speed and path control algorithms to maneuver

satellites along relative paths with specified rates along those paths. This thesis uses

MATLAB R© and SIMULINK R© to design and simulate a control algorithm capable

of providing relative speed and path control between satellites with a pointing error

of less than two degrees, a position error of less than two millimeters, and a mil-

limeter per second of velocity error. The enclosed research provides enhancements to

Massachusetts Institute of Technology’s SPHERES (Synchronized Position Hold En-

gage Reorient Experimental Satellites) program, a testbed for multi-object rendezvous

and docking research. This control algorithm is to be used on-board the International

Space Station to allow MIT’s SPHERES program to continue to provide a practi-

cal intermediate step to develop, test, and validate autonomous formation spaceflight

algorithms. Furthermore, the simulation tool used to develop the control algorithm

allows a greater community of control engineers to interact with SPHERES purely in

the MATLAB R© development environment.

iv

Acknowledgements

I cannot begin to adequately convey the gratitude owed to the many individuals

responsible for helping me complete this research. Let me first give thanks to the One

who makes all things possible—it is through Him I derive my strength and for Him I

labor.

The faculty and staff at AFIT have helped me every step of the way, and I will

always be grateful. I would especially like to thank Dr. Swenson and Dr. Black for

letting me bounce ideas off of them, and for helping me better understand how to

work with quaternions.

I would like to thank the sponsor of my research, Dr. David Miller with the

Space Systems Laboratory of MIT for giving me the opportunity to work with the

SPHERES program. I would also like to thank my MIT point-of-contact, 2Lt Micheal

O’Connor who was a great help in proving me with the necessary information on the

SPHERES program.

I could never have been able to complete the program here without my wonderful

wife who pushed me and supported me the whole way. Of course, my classmates

supported me every step of the way as well, and I would especially like to thanks 2Lt

Rob Steigerwald for his insight and knowledge of just about everything.

Lastly, I owe a sincere debt of gratitude to my advisor, Dr. Rich Cobb. He spent

countless hours discussing the project with me, pulling me through my problems with

MATLAB R©, and he helped shape the research into its final state. Thank you.

Samuel P. Barbaro

v

Table of Contents
Page

Abstract . iv

Acknowledgements . v

List of Figures . ix

List of Tables . xiii

List of Symbols . xiv

List of Abbreviations . xvi

I. Introduction . 1
1.1 Autonomous Docking . 2

1.1.1 In-Space Robotic Assembly 3

1.1.2 Space Debris Removal 3

1.2 In-Space Refueling . 4

1.3 MIT’s SPHERES Testbed 6
1.4 Thesis Problem Statement 7

II. Background . 9

2.1 Formation Spaceflight Throughout History 9

2.2 Reference Frames . 11
2.2.1 Inertial Reference Frame 11
2.2.2 Body Frame . 14

2.3 Coordinate Rotations . 15
2.3.1 Direction Cosine Matrices 16
2.3.2 Euler Angles . 19

2.3.3 Eigenaxis of Rotation & Principal Euler Angle . 22

2.3.4 Quaternions . 24

2.3.5 Rotating Quaternions 25

2.4 Control Techniques . 27

2.4.1 Linear Stability 27

2.4.2 Lyapunov Stability 31

2.4.3 Lyapunov Functions 32

2.4.4 Bang-Bang Control 33

2.4.5 Linear Quadratic Regulators 35

2.5 Modeling SPHERES Plant 37

vi

Page

2.5.1 Position & Velocity Model 39

2.5.2 Model for Quaternions & Angular Rates 41

2.5.3 Determining How Thrusters Rotate and Trans-
late SPHERES 43

III. Methodology . 46

3.1 Error Determination . 47
3.1.1 Relative Errors 47
3.1.2 Pointing Error 48

3.1.3 Quaternion Error 50

3.2 Control Algorithm Development 51

3.2.1 Translational Position & Velocity Controller . . 52

3.2.2 Optimal Weighting for LQR 56

3.2.3 Optimal Weighting for τ 66

3.2.4 Quaternion Controller 70

3.2.5 Optimal Weighting for Quaternion Controller . 73

3.2.6 Controller Nonlinearities 77
3.2.7 Controller Signal Logic 82

3.3 Interface & Simulation 83
3.3.1 User Commands 84
3.3.2 External Conditioning 86

3.3.3 Internal Conditioning 91

3.3.4 Post-Processing of Relative Information 92

IV. Results . 94
4.1 Model Verification . 94
4.2 Simulation Description 96

4.3 Simulation Results . 97
4.4 Relationship Between Dead-Zone & System Performance 105

4.5 Summary of Research Results 108

V. Conclusions . 110
5.1 Research Contributions 110
5.2 Recommendations for Future Work 111

Appendix A. Algorithm Script . 113

A.1 Simulation Master Script 113

A.2 Data Interpretation . 123

A.3 Skew Matrix . 126

vii

Page

Appendix B. Simulation Diagrams . 127

B.1 Error Determination . 127
B.1.1 Split State Subsystem 127

B.1.2 Subsystem to Determine Translational Errors . 133

B.1.3 Subsystem to Determine Quaternion Error . . . 133

B.2 Speed & Path Controller 133

B.2.1 Control Algorithm 138

B.2.2 Control Non-Linearities 138
B.2.3 Control Signal Processing 138

B.3 SPHERES Plant . 138
B.3.1 Calculate Force & Torque from Thrust 138

B.3.2 Update State Vector 148

B.4 Inputs & Outputs . 163

B.4.1 Breakdown of Output Subsystems 163

Appendix C. Code for Optimization of Gains 175

C.1 Script to Optimize LQR Weights 175

C.2 Script to Optimize τ . 179

C.3 Script to Optimize Kd 183

Appendix D. Code for Dead-Zone Affects 187

Bibliography . 192

Index . 195

viii

List of Figures
Figure Page

1.1. SPHERES Satellite [1] . 7

2.1. Unwrapped View of SPHERES Showing Body Frame Coordinate

System & Physical Features [2] 15

2.2. Illustration of a Rotation About 3rd Axis 16

2.3. Illustration of Euler Angles Rotate Body Coordinate Frame . . 19

2.4. Illustration of Eigenaxis of Rotation 23

2.5. Example of Second-order Responses 29

2.6. Example of Nyquist Plot . 30

2.7. Concepts of Stability . 32

2.8. Example Phase Plane of Look Ahead Controller [3] 35

2.9. Simple Diagram of Plant . 38

2.10. Thruster Location on SPHERES 44

3.1. Simple Control Diagram for Simulation 46

3.2. Sources for Orientation Error 49

3.3. Diagram of Position, Velocity, and Quaternion Controllers . . . 52

3.4. Translational Controller without Nonlinearities 53

3.5. Nyquist Plot of LQR Controller without Nonlinearities 54

3.6. Translational Controller with Nonlinearities 55

3.7. Sample Response for Position and Velocity Errors 57

3.8. Performance Characteristics as R1/Q1 Changes & Input is 0.2

m/s . 58

3.9. Performance Characteristics as R1/Q1 Changes & Input is 0.1

m/s . 60

3.10. Performance Characteristics as R1/Q1 Changes & Input is 0.05

m/s . 60

3.11. Performance Characteristics as Q2/Q1 Changes & Input is 0.2

m/s . 62

ix

Figure Page

3.12. Performance Characteristics as Q2/Q1 Changes & Input is 0.1

m/s . 62

3.13. Performance Characteristics as Q2/Q1 Changes & Input is 0.05

m/s . 63

3.14. Phase Plane of Translational Errors for 1-D Simulation 66

3.15. Response of Translational Errors for 1-D Simulation 67

3.16. Simulation Response of 1-D Translational Errors with Optimized

τ . 69

3.17. Phase Plane of 1-D Translational Errors with Optimized τ . . . 69

3.18. SPHERES Response of 3rd Quaternion Error when Commanded

to Roll 10◦ with Full Control 74

3.19. SPHERES Response of 3rd Quaternion Error when Commanded

to Roll 10◦ with Limited Control 75

3.20. SPHERES Response when Commanded to Roll 10◦ 76

3.21. SPHERES Response when Commanded to Pitch Up 10◦ 77

3.22. SPHERES Response when Commanded to Yaw Right 10◦ . . . 78

3.23. Example of Chattering with a Bang-Bang Controller [3] 79

3.24. Example of Dead-Zone Nonlinearity [4] 80

3.25. 2-D Illustration of Correction of Desired Position 90

4.1. Coordinate Frame Flow Diagram 95

4.2. Relative Path of Inspector SPHERES 97

4.3. Initial Phase of Simulation . 98

4.4. Simulation of Satellite Inspection 99

4.5. Path of Inspector Satellite . 100

4.6. Simulation of Satellite Inspection with a Moving Target 100

4.7. Inspector Pointing Error . 101

4.8. Quaternions and Angular Rates of Inspector Satellite 102

4.9. Periodic Signal Suppressor Affects on Angular Rates 103

4.10. Quaternions and Angular Rates of Target Satellite 103

x

Figure Page

4.11. Relative Motion of Inspector 104

4.12. Relative Motion of Inspector 105

4.13. Relationship Between Control Error & Fuel Consumption . . . 106

4.14. Comparison of Dead-zone with Control Error & Fuel Consumption 107

B.1. Speed & Path Control Simulation Overview 128

B.2. Error Determination Overview 129

B.3. Split State Vector . 130

B.4. Rotation Matrix to Rotate Information from Global Frame to

Body Frame . 131

B.5. Skew Matrix . 132

B.6. Convert Translational Errors to the Body Frame from the Global

Frame . 134

B.7. Determine Quaternion Error 135

B.8. Determine Eigenaxis of Rotation & Principal Euler Angle . . . 136

B.9. Speed & Path Controller Overview 137

B.10. Translational Controller . 139

B.11. Quaternion Controller . 140

B.12. Controller Non-Linearities . 141

B.13. Translational Rate-Limiter . 142

B.14. Rotaional Rate-Limiter . 143

B.15. Convert Control Signal to Thrust Vector 144

B.16. Convert Control Force to Thrust Vector 145

B.17. Convert Control Torque to Thrust Vector 146

B.18. Diagram of SPHERES Plant 147

B.19. Convert Thrust Vector into Applied Force & Torque 149

B.20. Convert Thrust Vector into Applied Force 150

B.21. Calculate Applied Force Along X-axis 151

B.22. Calculate Applied Force Along Y-axis 152

xi

Figure Page

B.23. Calculate Applied Force Along Z-axis 153

B.24. Convert Thrust Vector into Applied Torque 154

B.25. Calculate Applied Torque Along X-axis 155

B.26. Calculate Applied Torque Along Y-axis 156

B.27. Calculate Applied Torque Along Z-axis 157

B.28. Update State Vector via Rate Equations 158

B.29. Convert Translation States to Global Frame & Apply to State

Space Model . 159

B.30. Create Rotation Matrix to Go From Body Frame to Global Frame 160

B.31. Skew Matrix . 161

B.32. Quaternions & Euler Rates of Plant Model 162

B.33. Overview of Quaternion Update 164

B.34. Update 1st Three Quaternions 165

B.35. Update 4th Quaternion . 166

B.36. Overview of Angular Rate Update 167

B.37. Update Rate of Angular Rates 168

B.38. User Inputs . 169

B.39. Outputs Overview . 170

B.40. Rotate Translational State Information to Satellite Body Frame 171

B.41. Rotation Matrix to Rotate Information from Global Frame to

Body Frame . 172

B.42. Skew Matrix . 173

B.43. Split State Vector . 174

xii

List of Tables
Table Page

2.1. Thruster Effects in the Body Coordinate Frame [5] 44

3.1. Comparison of System Parameters when Q2/Q1 is 0.09 and 0.37 64

3.2. Comparison of System Parameters of Position Error as τ Changes 68

3.3. User Inputs for SPHERES Simulation 85

xiii

List of Symbols
Symbol Page

φ Roll Angle . 19

θ Pitch Angle . 19

γ Yaw Angle . 19

Rbi Rotation Matrix from Inertial Frame to the Body Frame . 20

ε Eigenaxis of Rotation . 22

Φ Principal Euler Angle . 22

q̄ Quaternion Vector . 24

q̃ Vector of 1st 3 Quaternions 24

q4 4th Quaternion . 24

I Identity Matrix . 25

M̃ Transmuted Quaternion Matrix 27

V Lyapunov Function . 32

V̇ Rate of Lyapunov Function 32

Q LQR State Weight Matrix 36

R LQR Control Weight Matrix 36

K Optimal Steady-State Gain Matrix 37

P Steady-State Solution to Riccati Equation 37

X̄ State Vector . 39

˙̄X Derivative of State Vector 39

ω̄ Angular Rates . 41

ωx Skew Matrix of Angular Rates 42

M̄ External Moments . 42

˙̄H Rate of Change of Angular Momentum 42

MOI Mass Moment of Inertia 42

ū Control Vector . 42

xiv

Symbol Page

q̄error Quaternion Error . 50

τ ‘Look Ahead’ Gain . 52

Q1 LQR Position Weight . 56

Q2 LQR Velocity Weight . 56

R1 LQR Control Weight . 56

δ Dead-Zone Limit . 79

x̄ Vector . 87

m̄ Slope Vector . 87

b̄ Intercept Vector . 87

r̃t User-Supplied Location of Target 89

ρ̃ Desired Range Inspector is from Target 89

r̄t True Location of Target 89

ēt Error Between Desired and True Location of Target 89

r̃in Desired Location of Inspector 91

ρ̄ Actual Range Inspector is from Target 92

xv

List of Abbreviations
Abbreviation Page

USAF United States Air Force 1

MIT Massachusetts Institute of Technology 1

SPHERES Synchronized Position Hold Engage Re-orient Experimental

Satellites . 6

NASA National Aeronautics and Space Administration 6

ISS International Space Station 6

AFRL Air Force Research Laboratory 10

DART Demonstration of Autonomous Rendezvous Technology . . 10

DARPA Defense Advanced Research Projects Agency 11

LQR Linear Quadratic Regulator 35

LQE Linear Quadratic Estimator 35

xvi

Satellite Relative Motion Control

for MIT’s SPHERES Program

I. Introduction

Spacecraft formation-flying techniques and satellite autonomy can transform the

way space missions are conducted because these concepts introduce innovative mission

capabilities to the domain of space. Specifically, autonomous formation spaceflight

techniques with the use of speed and path control provide users with a capability to

routinely maneuver to provide autonomous satellite docking procedures and in-space

refueling.

The United States Air Force (USAF) affirms that space capabilities are a vital

aspect of air and space power [6]. Spacecraft with speed and path control algorithms

provide an unprecedented level of flexibility to the operational functions of the Air

Force in space through the means of autonomous docking, in-space robotic assembly,

debris removal, and in-space refueling. The manner in which autonomous formation

spaceflight with speed and path control algorithms can accomplish this is discussed

in Sections 1.1 and 1.2.

The technology for autonomous formation spaceflight is still an emerging con-

cept that needs further development. Before satellites can be used in this manner, the

spacecraft will need to have algorithms capable of controlling these spacecraft relative

to other objects in space. A number of institutions within the scientific community

including Massachusetts Institute of Technology (MIT) are conducting research to

further the development of autonomous formation spaceflight. Working cooperatively

with MIT, this thesis is focused on providing MIT with a speed and path control

algorithm to be integrated with their work to demonstrate precise control of satellites

operating relative to other satellites. Section 1.3 discusses how MIT is working to

continue to develop formation spaceflight, and Section 1.4 introduces the research

1

within this thesis and how this thesis will be used to contribute to the understanding

of autonomous formation spaceflight.

1.1 Autonomous Docking

The ability for spacecraft to autonomously dock with space objects would def-

initely find use within the USAF. Air Force doctrine specifies the need for the Air

Force to sustain existing space systems, augment these systems with redundant or

additional capabilities as national needs dictate, and service or maintain these space

systems [6]. Space system sustainment is required for space systems whose individual

satellites need to be replaced because it has failed or is predicted to fail. These needs

however are currently attained through the costly process of space lift. Autonomous

docking provides for another means of sustainment, augmentation, and maintenance

of space systems.

The vast majority of satellites launched to date have not been resupplied, ser-

viced, upgraded, or reconfigured while on orbit. This basic operational limitation

could be changed by developing robust autonomous docking control algorithms and

the associated servicing equipment. Autonomous algorithms would eliminate the need

for complicated maneuvers executed by large and expensive ground operation teams.

Autonomous rendezvous and docking could be used to restore mission capability

to satellites that are tumbling or spinning uncontrollably. Routines could also be

developed to allow one satellite (or a number of smaller satellites) to approach, dock,

determine new mass moments of inertia of the combined system, and thrust in a

manner to restore a desired orientation and stabilize the satellite before releasing.

This would allow the now stable satellite to use its own control systems to resume

normal stability procedures for the spacecraft. This could in effect save multi-million

dollar programs. A specific example is the Astra 5A commercial telecommunications

satellite launched in 1997 [7]. In January of 2009, that satellite lost control of its

orientation after experiencing a technical anomaly [7]. The satellite was then unable

to charge its batteries with its solar panels and then ceased functioning. Thus without

2

power the satellite became useless which resulted in a loss of millions of dollars [7].

Autonomous spaceflight technologies with the capability to autonomously dock could

have prevented this loss by stabilizing Astra 5A, and orienting the satellite’s solar

panels to the sun to recharge the batteries. At this point the ground crews on Earth

could diagnose errors and potentially restore Astra 5A back to full mission readiness.

Furthermore, this process could also be used to propel misplaced satellites that

did not make it to their desired mission orbits. An example of such a satellite would

be the Air Force’s billion dollar AEHF-1 satellite [8] that failed to reach its desired

orbit when an apogee motor failed to ignite1. Autonomous docking could also be used

for in-space robotic assembly and the removal of space debris.

1.1.1 In-Space Robotic Assembly. Speed and path control algorithms can

also be used to provide methods to explore new space capabilities through use of

autonomous robotic space assembly. This concept involves using satellites as robotic

workers that could be programmed to build various structures in space. Instead of

using astronauts to assemble the structures in space, small satellites acting as robots

could do the work continuously only stopping to refuel at nearby mother ships or to

wait for more materials to be launched. Robust control algorithms would allow for

these small satellites to operate safely in the harsh environment without endangering

human life [10]. This ability would potentially allow for large structures to be created

in space faster, cheaper, and safer than current methods allow. Although MIT is

mostly interested in this concept, the USAF would likely make use of this concept to

develop for future missions that require space structures that are much larger than

what can currently launch atop a single booster.

1.1.2 Space Debris Removal. Speed and path control algorithms in conjunc-

tion with autonomous formation spaceflight techniques can also be used to provide

kinetic operations to attain and maintain space superiority through the removal of

1While the apogee motor failed, the program was saved by using on board Hall-effect thrusters
to eventually boost AEHF-1 to the proper orbit after nine months [9].

3

space debris. Space debris includes any man-made object orbiting the Earth that no

longer has a useful purpose [11]. There are currently over 19,000 known objects of

space debris greater than ten centimeters. This includes left over upper stage rockets,

defunct satellites, and debris from spacecraft collisions [12]. This space junk poses an

increasing risk to space capabilities as the amount of debris continues to grow. The

risk of debris impacting space capabilities is epitomized by the 2009 collision of the

inoperative Cosmos 2251 with the Iridium 33 communications satellite [13]. This col-

lision not only affected Iridium Communications Inc. R©, but the collision also affects

all space users because the collision added over one thousand pieces of debris larger

than ten centimeters [14] which increases the chances of future collisions, especially

since methods to remove space debris do not currently exist.

Spacecraft speed and path control can be used to remedy this growing problem,

and directly integrates with USAF space doctrine for the purpose of debris removal.

Among a few of the tenets of defensive counter space, spacecraft speed and path

control allows the USAF to pro-actively preserve space capabilities, restore and recover

space capabilities, and suppress threats to friendly space capabilities [6]. Speed and

path control algorithms could be used on a number of small satellites operating from

a larger spacecraft to allow the small satellites to attach themselves to large pieces

of space debris. These satellites could then force the debris to re-enter the Earth’s

atmosphere on a trajectory that would allow the space junk to burn up on descent

after the small satellites detached and returned to the larger spacecraft. When used

in conjunction with in-space refueling (Section 1.2), these satellites could be used to

remove a number of large space debris throughout their mission lifetime. This method

would allow the USAF to protect friendly space capabilities from the threats posed

by space debris.

1.2 In-Space Refueling

Like aircraft, spacecraft are limited by the amount of available fuel. The amount

of fuel carried by a spacecraft plays a part in determining the mission length, payload

4

mass, and the reliability the spacecraft will have throughout the course of its mission.

In addition, situations exist in which it would be desirable for autonomous satellites to

temporarily disregard the need to fly in Keplarian orbits. Previously, this desire has

been ignored because taking satellites out of Keplarian orbits typically requires fuel

to be consumed at an unacceptable rate. Thus, without the use of in-space refueling,

spacecraft would not be able to violate Keplarian orbits for any useful length of time.

However, autonomous formation spaceflight with the use of speed and path control

algorithms provide the framework to make in-space refueling a reality. This concept

not only allows for satellites to temporarily leave Keplarian orbits as missions dictate,

but it would also allow for other spacecraft to carry less fuel, and operate much

longer than current satellites can. Refueling satellites in space can extend service life,

reduce launch costs by reducing fuel mass of satellites, and provide an opportunity for

satellites to occasionally ignore Keplarian orbits and be used in numerous applications

which current satellites are unable to perform. Space refueling allows for satellites

to consist of heavier payloads without having to sacrifice payload mass for fuel mass.

This in turn makes space refueling a force multiplier much like aerial refueling provides

greater capabilities for missions within the Earth’s atmosphere [6].

A space-based laser system is one way the USAF could take advantage of in

space refueling. The concept for a space-based laser was popularized by President

Reagan in 1983 with his proposal of the Strategic Space Initiative [15]. This plan

sought to use a space-based laser for ballistic missile defense. Space lasers have also

been considered for removal of orbital debris between one and ten centimeters [16].

Regardless of the use for a space-based laser, one major drawback is that chemical

lasers could only be fired a few times before the fuel for the laser was expended [17].

This would traditionally mean that the satellite with the laser could no longer serve its

intended purpose. Formation spaceflight, through the use of speed and path control

algorithms, could change that by implementing space refueling. Another satellite(s)

could be used to deliver the fuel that powers the laser which would considerably

extend the usable lifetime of a space-based laser system.

5

1.3 MIT’s SPHERES Testbed

As introduced in the preceding examples, speed and path controllers, have the

potential to provide new and innovative ways to improve methods for conducting

space operations using autonomous formation spaceflight. Yet given the high cost of

operating spacecraft from the ground where in-contact times are often only a small

fraction of an orbit period, there is a strong incentive to perform the tight control of

relative position and orientation autonomously. But as with any emerging technology,

a high degree of risk is inherently applied when creating and applying formation flight

and docking control algorithms to real-world space systems. As these programs are

oftentimes multi-million or multi-billion dollar systems, the risk becomes intolerable.

In order to reduce risks associated with autonomous formation spaceflight, and to a

greater extent formation spaceflight technologies, MIT has developed the SPHERES

(Synchronized Position Hold Engage Re-orient Experimental Satellites) testbed as a

practical intermediate step to develop, test, and validate autonomous algorithms.

SPHERES is a spacecraft formation flying testbed designed to provide a cost-

effective, long duration, re-loadable, and easily reconfigurable platform with represen-

tative dynamics for the development and validation of metrology, formation flying,

and autonomy algorithms [2]. Their algorithms are intended to help the Air Force and

NASA buy down the high risk associated with autonomous rendezvous and docking

algorithms. Figure 1.1 shows what the small satellite looks like.

The SPHERES testbed currently has two test locations: MIT’s Space System

Laboratory and the International Space Station (ISS). The Space System Laboratory

is located at MIT and provides users with a two dimensional 1-g test environment,

while the ISS provides users with an environment to exploit the effects of micro gravity

and test SPHERES in all three dimensions.

6

Figure 1.1: SPHERES Satellite [1]

1.4 Thesis Problem Statement

To further the development of formation-flying technologies, this thesis will

investigate enhancements to the SPHERES software control suite operating under

MIT’s Guest Scientist Program [5]. Currently, SPHERES uses control algorithms

that close the loop on the satellite’s position in the body frame and its orientation

in the global frame. This allows users to dictate how one SPHERES should be po-

sitioned and orientated with respect to another SPHERES satellite. Although these

algorithms have led to many successful SPHERES tests to date, the SPHERES plat-

form is currently unable to maneuver along a path while simultaneously controlling

the velocity of the satellite. This thesis aims to produce a control algorithm to remedy

this deficiency.

Having introduced the motivation and objective for the current research, the

thesis work is documented as follows. Chapter II provides a review of coordinate

frames, quaternions, control strategies and related research in three dimensional tra-

jectory tracking, as well as a background on how SPHERES has been used in previous

research. Next, Chapter III develops the methodology applied to the design of the

speed and path controller for SPHERES and provides initial simulated results. Fol-

7

lowing this, Chapter IV documents the results from testing and discusses how to best

implement the control algorithm with MIT’s SPHERES program. Lastly, Chapter V

offers conclusions from the speed and path control algorithm designed herein.

8

II. Background

The study of relative motion between spacecraft is not a new concept. This back-

ground provides a brief synopsis of the past work within the field of formation space-

flight. Additionally, reference frames, their rotations, and a number of control tech-

niques are included to understand how to develop a control algorithm for the relative

motion control of a satellite. Section 2.1 introduces some of the previous research in

formation spaceflight and provides a few historical examples. Section 2.2 defines the

coordinate frames used through this thesis. Section 2.3 presents methods for rotat-

ing between these coordinate frames. Section 2.4 covers the basic control techniques

that are used to develop the control algorithm with this research. Lastly, Section 2.5

examines the dynamics used to govern the satellites used in the designed simulation

and demonstrates how the SPHERES plant is modeled.

2.1 Formation Spaceflight Throughout History

From 1983 to 2005, fifty-seven shuttle missions successfully utilized one or more

forms of close proximity operations. But formation spaceflight did not begin solely

with the Shuttle Program. Experiments to validate the ability of a human eye to

track and maintain control of a docking sequence were preformed on Mercury mis-

sions. Following the Mercury Program, NASA’s Gemini program sought to improve

and provide a firm foundation for manual rendezvous and docking procedures [18].

During Project Gemini, rendezvous and docking technology and mission techniques

were developed and successfully demonstrated. Additionally, Goodman states that

the most significant accomplishments of the Gemini program with respect to ren-

dezvous operations included multiple rendezvous operations while staying within a

propellant budget [19]. Next the Apollo Program capitalized on the research of the

Gemini Program and included rendezvous operations as methodical techniques, using

several missions to practice lunar landing. By the time the Shuttle Program con-

tracts were awarded in 1972, rendezvous, docking technology, and flight techniques

were considered to be mature and the challenges well understood. This allowed more

9

automation1 to be included in the design of the Shuttle rendezvous procedures used

during the construction of the ISS [18].

The rendezvous and docking procedures developed for NASA were a result of

W.H. Clohessy and R.S. Wiltshire’s development of relative equations of motion in

the early 1960’s [20]. The Clohessy-Wiltshire equations not only allow for docking

and rendezvous procedures, but also close-proximity operations between spacecraft.

Although the Clohessy-Wiltshire equations only account for the main satellite or

‘chief’ to have a circular orbit, this restriction can be removed through more complex

sets of these equations which have been developed in recent years [21].

Research into formation spaceflight is a topic of growing interest as the poten-

tial advantages to be gained through coordinated satellite formations are brought to

light. This can be seen by observing the number of government programs dedicated

to formation spaceflight and its related technological development. The TechSat-

21 program investigated emerging technologies essential for satellite formations [22].

Although TechSat-21 was canceled in 2003, the program was meant to be a tech-

nology demonstrator for distributed mission architecture, micro-satellite bus, micro-

propulsion, sparse aperture sensing, and collaborative behavior. The Air Force Re-

search Laboratory (AFRL), in an effort to establish proximity operations with small

satellites, launched the XSS-11 on 11 April, 2005. This satellite successfully demon-

strated rendezvous and proximity operations with an expended rocket body as well

as several US-owned inactive space objects near its orbit [23]. NASA also launched

the Demonstration of Autonomous Rendezvous Technology (DART) program in April

2005. This program was part of NASA’s efforts to make space travel safer and more

affordable by demonstrating technologies for spacecraft to autonomously locate and

rendezvous with other spacecraft without direct human guidance [24]. This program

successfully demonstrated the capability to locate and rendezvous, but was unable to

perform all of the close-proximity and circumnavigation tasks when it ran out of fuel.

1Although these techniques were designed with more automation, astronauts still were involved
with all formation procedures.

10

The Defense Advanced Research Projects Agency (DARPA) has also sought to vali-

date a variety of proximity operations. Specifically, DARPA’s Orbital Express Space

Operations Architecture demonstrated the ability for autonomous on-orbit refueling

and reconfiguration of two satellites [25]. This program successfully launched on 8

March 2007 and completed the technology demonstration on 22 July 2007.

Interest in formation spaceflight is not limited to the government industry. MIT

has pursued research in this field through the use of SPHERES. The SPHERES

program provides a testbed with six degrees-of-freedom on-board the ISS [5]. The

SPHERES testbed has demonstrated the capability for two satellites to create, main-

tain or leave a formation. A third satellite has also been shown to be capable of

joining an existing formation. Path planning algorithms have also been installed to

provide the ability for one SPHERES to dock with another uncooperative spacecraft

that is freely tumbling [26]. The SPHERES program was first brought to the ISS in

2003 but research is still on-going. Future plans for SPHERES include the installation

of computer vision based navigation [27]. Merging this capability with a speed and

path control algorithm would provide for a number of new concepts to be explored.

2.2 Reference Frames

Before transition into the design of the satellite controller, it is fundamental to

understand the satellite’s dynamics as well as how those dynamics change with the

frame of reference. In addition, a number of reference frames are used both within

this thesis and when working in space in general because certain frames of reference

provide specific advantages. Section 2.2.1 discusses the use of an inertial reference

frame and Section 2.2.2 details what the body frame is and how the frame is used.

It is worth noting that in the scope of this thesis all reference frames consist of a

right-hand coordinate frame of three orthogonal unit vectors.

2.2.1 Inertial Reference Frame. An inertial coordinate system uses a frame

of reference that does not accelerate and has constant rectilinear motion with respect

11

to any other inertial reference frame. Furthermore, Newton’s laws must be expressed

in an inertial reference frame [28]. To illustrate this, consider Newton’s Second Law

of motion, Equation 2.1. Let ‘m’ represent the mass of the object, and let ‘A’ be

defined as a vector consisting of the object’s acceleration as viewed from an inertial

frame of reference.

F = mA (2.1)

Equation 2.1 produces a force vector that consists of all the true forces (ie.

gravitational, electro-magnetic, nuclear, etc.) acting on the object. Although this

fundamental equation is a true representation of force, it is only valid in an inertial

reference frame that does not accelerate in relation to the observed object [28]. If the

frame of reference is also accelerating, Newton’s Second Law must be expanded to

include the additional accelerations of the frame of reference as shown in Equation 2.2

[29]. Let ‘A’ denote an acceleration vector and ‘V’ refer to a velocity vector. Next, the

subscript ‘obj’ refers to the object in question, and ‘rf’ denotes a value of the reference

frame. Furthermore, the variable Robj/rf , identifies the position of the object in the

frame of reference and ω is the angular velocity of the reference frame.

F = m(Aobj + Arf + 2ω × Vrf + α×Robj/rf + ω × (ω ×Robj/rf)) (2.2)

Equation 2.2 now defines a more complicated force vector that represents the

force of the object as seen from the moving reference frame. This force results from

not only the acceleration of the object and the acceleration of the moving reference

frame with respect to inertial space (as seen in the first two terms of Equation 2.2),

but the force also is affected by a Coriolis acceleration, centrifugal acceleration, and an

Euler acceleration [29]. These additional accelerations result from the relative motion

between the object and the moving reference frame and can be thought to include

12

‘fictitious’ forces on the object. The reason these forces are considered fictitious is

because they do not affect the object as viewed from inertial space because the forces

do not actually exist.

To clarify this concept, consider a simple game of catch. If a person is stationary

and tossed a ball, they could intuitively use Newton’s Second Law to catch the ball

with ease. But if they were to play that same game of catch while skydiving things

would be more complex. If tossed a ball while tumbling through the air, the act of

catching the ball becomes considerably more difficult. This is because the ball would

appear to move differently from the catcher’s perspective. The ball is not moving

differently than it did before. It’s the catcher that does the extra moving though, and

this motion is where these additional accelerations come into play.

Although playing catch while sky diving is beyond the scope of this thesis, mod-

eling a force on a satellite most certainly is not. Knowing a satellite’s acceleration is of

utmost importance when modeling the satellites dynamics as discussed in Section 2.5.

To calculate acceleration in an inertial frame simply find the force and divide by the

mass using Equation 2.1. The inertial acceleration of an object could be found with

information from a non-inertial reference frame by manipulating Equation 2.2 to yield

Equation 2.3.

Aobj =
F

m
− (Arf + 2ω × Vrf + α×Robj/rf + ω × (ω ×Robj/rf)) (2.3)

Although the inertial acceleration could be calculated in a non-inertial reference

frame it is considerably simpler to use an inertial reference frame for these calcula-

tions. This is typified when calculus is introduced into the equations as well. For

example, determining an object’s velocity with respect to time is attained by taking

the derivative of F
m

with respect to time if the information is already in the inertial

frame. But when considering a non-inertial frame of reference the time derivative of

Equation 2.3 needs to be taken. This derivative would include the time derivative of

each of those components. These additional calculations increase computing time and

13

are more difficult to accomplish when compared to working in an inertial reference

frame. Thus, most individuals and programs execute these calculations in an inertial

frame of reference.

2.2.1.1 Global Reference Frame. Now that the advantages of inertial

reference frames have been highlighted, it is important to label an actual inertial

reference frame to be used within this thesis. The trouble arises in that no known

frame of reference is truly inertial because every known object in space has some

acceleration. The earth rotates around the sun; the sun moves in the milky way

galaxy; the galaxy is expanding in the universe. And while the center of the universe

could be truly inertial, it is not particularly practical to measure everything from

the center of the universe. Thus, one typically uses a frame of reference that is

‘inertial enough’ for their application. In regards to this thesis and to the SPHERES

program at large, an ‘inertial-enough’ reference frame exists on-board the ISS and is

referred to as the global reference frame. The global reference frame is considered

‘inertial-enough’ because while the ISS does move, the ISS does not move fast enough

to generate accelerations with magnitudes large enough to produce noticeable errors

within the six minute test periods of the SPHERES program. Thus, the terms global

frame and inertial frame are considered to be the same for the purposes of this thesis.

The origin of the global frame is in the center of the Unity module of the ISS [2]. The

positive ‘x’ axis points to the front of Unity module; the positive ‘y’ axis points to

the right. Lastly, the positive ‘z’ axis completes the right-hand coordinate frame by

pointing down to the deck.

2.2.2 Body Frame. Although the inertial or global reference frame is used

for complex calculations, a non-inertial reference frame is useful when working with a

number of sensors and actuators specific to each spacecraft. A body reference frame

unique for each satellite is useful when operating subsystems on the satellite because

it allows users to manipulate these subsystems more intuitively. Thus, in regards to

SPHERES, a body reference frame is used when working with the thrusters and the

14

controllers that direct how the thrusters fire within this project. The origin of the

body frame of each satellite is located at the geometric center of each SPHERES. The

positive ‘x’ axis points in the direction of the expansion port, while the positive ‘z’

axis points towards the pressure system regulator knob. Lastly, the positive ‘y’ axis

completes the right-hand coordinate system [2]. Figure 2.1 illustrates how the body

frame is aligned with the physical features of each satellite.

Figure 2.1: Unwrapped View of SPHERES Showing Body Frame Coordinate Sys-
tem & Physical Features [2]

2.3 Coordinate Rotations

The previous sections described the used of different coordinate frames and

mentioned that each frame has specific advantages. This section discusses how to

rotate vectors between coordinate frames, so that the most advantageous frame can

be used. It is important to note that rotating a vector from one frame to another

does not actually change the inertial vector, just the basis of a vector [30]. While the

magnitude and true direction of a vector remain constant through the rotation, the

direction of a vector appears to change as one observes the vector from a different

15

frame of reference. Generally speaking vectors in one frame can be rotated into

another frame through the use of a direction cosine matrix, or ‘rotation matrix’.

Section 2.3.1 discusses what type of properties these rotation matrices have. A number

of methods exist to calculate these rotation matrices, but three methods used to

perform coordinate rotations are discussed: Euler angles, principle axis of rotation,

and quaternions. Sections 2.3.2, 2.3.3, & 2.3.4 respectively discuss these different

methods of rotations. The research with this thesis ultimately uses quaternions to

handle coordinate rotations to prevent singularities. However, the other methods are

used to transition user inputs into quaternions since the author does not expect most

users to be able to intuitively insert desired quaternion vectors (see Section 3.3.1).

Finally, Section 2.3.5 briefly discusses how to rotate different quaternions as needed

to determine the orientation error in Section 3.1.3.

2.3.1 Direction Cosine Matrices. A rotation matrix is used in order to

transform a vector from one frame to another by changing the basis of that vector.

Consider the vector ‘V’ in Figure 2.2 as well as x-y-z and x’-y’-z’ coordinate frames.

Figure 2.2: Illustration of a Rotation About 3rd Axis

16

The two coordinate frames share the same third axis but the first axes and the

second axes of the frames are separated by an angle θ. Next, assume the x-y-z frame

to have three unit vectors ‘a’, ‘b’, & ‘c’ along each of the frames’ axes, and imagine

the x’-y’-z’ frame has three unit vectors ‘d’, ‘e’, & ‘f’ along its axes as well. With this

in mind the vector ‘V’ can be represented in the x-y-z frame through Equation 2.4,

and can be related in the x’-y’-z’ coordinate frame using Equation 2.5 [30].

V = Vaâ+ Vbb̂+ Vcĉ (2.4)

V = Vdd̂+ Veê+ Vf f̂ (2.5)

While the magnitude of V remains the same regardless of which equation is first

used, the components of each equation may be different because the vector is repre-

sented with a different basis associate with the two frames illustrated in Figure 2.2. In

order to rotate from one to the other a relationship needs to be established between

the two coordinate frames. With knowledge of how the coordinate frames are oriented

with respect to each other the vector information in one frame can be converted to

the other frame. Recalling that the coordinate frames of Figure 2.2 are separated by

a third axis rotation of θ, the ‘V’ represented in the x-y-z frame can be written in the

x’-y’-z’ frame as shown in Equations 2.6-2.8.

Vd = cos(θ) · Va + sin(θ) · Vb + 0 · Vc (2.6)

Ve = −sin(θ) · Va + cos(θ) · Vb + 0 · Vc (2.7)

Vf = 0 · Va + 0 · Vb + 1 · Vc (2.8)

Equations 2.6-2.8 can be written compactly in the form of a matrix as in Equation 2.9.

This matrix is referred to as a direction cosine matrix or a rotation matrix.

17

Vx′y′z′ =

cos(θ) sin(θ) 0

−sin(θ) cos(θ) 0

0 0 1

Vxyz (2.9)

Equation 2.9 provides the rotation matrix to convert information out of the x-

y-z frame and into the x’-y’-z’ frame. To convert information the other direction the

inverse of the rotation matrix is needed. Fortunately, one does not need to calculate

this matrix by actually taking an inverse as this process tends to be computationally

expensive. Recall that rotation matrices are based on the orientations between coor-

dinate frames and that all the coordinate frames used within this thesis consist of a

right-handed system of three orthogonal unit vectors. Therefore any rotation matrix

for any pair of coordinate frames has orthogonal rows and columns that each repre-

sent unit vectors [31]. This means that any rotation matrix is orthonormal which is

useful because the inverse of an orthonormal matrix is simply the transpose of that

matrix [31].

The same process can be used to create rotation matrices about other axes as

well. In particular, a rotation matrix can be created to correspond with each of the

three orthogonal axes. A positive rotation about the first axis or ‘x-axis’ would result

in the direction cosine matrix of Equation 2.10. Furthermore, a positive rotation

about the ‘y-axis’, or 2-rotation would result in Equation 2.11, and a positive 3-

rotation would result in Equation 2.12.

R3 =

1 0 0

0 cos(α) sin(α)

0 −sin(α) cos(α)

 (2.10)

R3 =

cos(β) 0 −sin(β)

0 1 0

sin(β) 0 cos(β)

 (2.11)

18

R3 =

cos(γ) sin(γ) 0

−sin(γ) cos(γ) 0

0 0 1

 (2.12)

2.3.2 Euler Angles. Using Euler angles to assemble a series of rotation

matrices allows for simplistic visualization of complex rotations. This is done by

breaking up a rotation into a series of three simple rotations. The first rotation can

be about any axis, while the second rotation is about either of the two axes yet to

be used. Lastly, the third rotation is about either of the two axis not used for the

previous rotation [32]. This is commonly referred to as a body-axis rotation since the

angles build off of each other and stay with the rotating frame. An example Euler

angle rotation sequence is the 3-2-1 sequence used by aircraft known as roll (φ),pitch

(θ), and yaw (γ). Figure 2.3 describes how one frame is rotated using the roll pitch

yaw sequence.

Figure 2.3: Illustration of Euler Angles Rotate Body Coordinate Frame

To understand Figure 2.3, let the î, ĵ, k̂ frame represent an inertial reference

frame, and let the final orientation of the body frame be represented with the x”’,

y”’, z”’ frame. Both the body frame and the inertial frame start and the same spot

19

as shown on the left of Figure 2.3. To achieve a desired orientation the body frame

rolls about its x-axis to reach x’, y’, & z’. The intermediate rotation is achieved by

pitching about the second axis (pitch) of the x’, y’, z’ frame to reach the x”, y”, z”

frame. The body frame is then put into the desired orientation with the roll about

the third axis (yaw) to reach the x”’, y”’, z”’ frame. This is referred to as a 3-2-1

rotation because the body frame is first rotated about the first axis, then the second,

and finally rotated about the third axis to reach the final orientation. The reason the

numbers appear backwards has to do with matrix multiplication. Each consecutive

rotation is pre-multiplied to the previous one as in Equation 2.14. Thus when read

left to right the final rotation matrix consists of a 3, 2, and 1 rotation.

Rbi = [R3(γ)][R2(θ)][R1(φ)] (2.13)

Rbi =

cos(γ) sin(γ) 0

−sin(γ) cos(γ) 0

0 0 1

cos(θ) 0 −sin(θ)

0 1 0

sin(θ) 0 cos(θ)

1 0 0

0 cos(φ) sin(φ)

0 −sin(φ) cos(φ)

 (2.14)

Using the elementary direction cosine matrices these rotations can be used to

generate the rotation matrix to convert vectors from the inertial frame to the body

frame (Rbi). The product of Equation 2.14 is displayed in Equation 2.16. The sine

and cosine functions of Equation 2.16 are represented as s(x) and c(x) respectively.

EulerAngles =

φ

θ

γ

 (2.15)

20

Rbi =

c(θ) · c(γ) c(φ) · s(γ) + s(φ) · s(θ) · c(γ) s(φ) · s(γ)− c(φ) · s(θ) · c(γ)

−c(θ) · s(γ) c(φ) · c(γ)− s(φ) · s(θ) · s(γ) s(φ) · c(γ) + c(φ) · s(θ) · s(γ)

s(θ) −s(φ) · c(θ) c(φ) · c(θ)

(2.16)

In addition to creating a rotation matrix from a series of Euler angles, Equa-

tion 2.16 can also be used to find a set of Euler angles when given a rotation matrix.

Rbi can be used to back out the Euler angles as is done in Equations 2.17- 2.19.

θ = sin−1(R3,1) (2.17)

φ = sin−1(
−R3,2

cos(θ)
) (2.18)

γ = sin−1(
−R2,1

cos(θ)
) (2.19)

A problem arises with this method when the frame pitches ±90◦ because the

roll and pitch angles can not be identified. This type of singularity is not unique to

the 3-2-1 rotation. In fact, all Euler angle rotations encounter a singularity when the

second rotation causes the first and third rotations to become mathematically indis-

tinguishable. This is because an infinite amount of Euler angles could be generated

from the rotation matrix when a singularity exists. Therefore, controllers are unable

to reliably produce accurate Euler angles when these singularities are present. Two

options exist to work around this. Either the user could exercise caution to ensure the

controller is never faced with a singularity by constraining the inputs and limiting the

frame orientation, another approach could be used to determine rotation matrices.

The latter option is chosen for the SPHERES application since it is impractical to

limit satellite orientations.

21

2.3.3 Eigenaxis of Rotation & Principal Euler Angle. The latter option leads

to the use quaternions as discussed in Section 2.3.4. Although the SPHERES program

uses quaternions to perform coordinate rotations, quaternions in and of themselves

are difficult to understand without knowledge of another rotation method. Thus, the

discussion of an eigenaxis of rotation and it associated principal Euler angle is included

to provide a link between rotating with Euler angles and rotating with quaternions.

The eigenaxis approach uses one rotation about a single axis with one angle

instead of three axes with three angles. This method is derived from Euler’s theorem

that the displacement of a rigid body with one point fixed is a rotation about some

axis [33]. Instead of combining three simple rotations to describe a complex rotation

as is done with the method of Euler angles, this approach describes an arbitrary

rotation by rotating the coordinate frame about one stationary axis [33]. Although

only one axis and one angle are needed to perform this rotation, the axis of rotation

may not line up with one of the principal axes of the coordinate frame. Thus, this

rotation vector, or eigenaxis of rotation needs to be calculated along with the principal

Euler angle. Wie provides the derivation for this process [32]. For the purposes of

SPHERES and this thesis, the eigenaxis (ε) is found through the cross product of two

vectors as shown in Figure 2.4.

The first vector (red) is where the satellite is supposed to point, and the second

vector (blue) dictates where the satellite is currently pointing. The cross product

produces the vector that the satellite needs to rotate about to get to the desired

orientation. Furthermore, the principal Euler angle (Φ) is found using the dot product

of those two vectors as shown in Equation 2.20.

Φ = acos(
ā · b̄
| ā || b̄ |

) (2.20)

With an understanding of how this method is derived, it is useful to know how

to create these values when given a rotation matrix. Equation 2.21 shows how to

derive the principal Euler angle (Φ) from a given rotation matrix, R. ‘trace(R)’ is

22

Figure 2.4: Illustration of Eigenaxis of Rotation

the trace operation applied to matrix R, which is the sum of the diagonal elements

of R. In addition, Equation 2.22 demonstrates how to determine the skew-symmetric

representation of the eigenaxis of rotation (ε) using rotation matrix R and angle Φ.

The true representation of ε is taken from its skew matrix using Equation 2.23.

Φ = cos−1[
1

2
(trace(R)− 1)] (2.21)

εx =
1

2sin(Φ)
(RT −R) (2.22)

εx =

0 −ε3 ε2

ε3 0 −ε1
−ε2 ε1 0

 (2.23)

Unfortunately, eigenaxis rotations also encounter a singularity. This occurs

when the rotation matrix is an identity matrix which means no rotation is necessary.

When this happens, Φ = 0 which results in ε becoming undefined as Equation 2.22 can

23

not be evaluated [33]. One mechanism by which this singularity may be avoided is the

inclusion of a cleverly chosen fourth parameter which leads into the implementation

of quaternions.

2.3.4 Quaternions. In order to perform multiple coordinate rotations with-

out risk of singularity Euler parameters, otherwise known as quaternions, are used.

The quaternion vector, q̄, uses four components to represent orientations in three-

dimensions.

q̄ =

q1

q2

q3

q4

 (2.24)

Similar to the eigenaxis method, quaternions also determine coordinate orienta-

tions through a single axis of rotation [32]. With this in mind, the first three quater-

nions (q̃) are related to the eigenaxis. The fourth quaternion (q4) is included to prevent

a singularity when no rotation occurs. This naturally leads one to represent quater-

nions with respect to the eigenaxis and principal Euler angle as in Equations 2.26

and 2.27.

q̃ =

q1

q2

q3

 (2.25)

q̃ = ε̄sin(
Φ

2
) (2.26)

q4 = cos(
Φ

2
) (2.27)

24

In addition to these equations, the four quaternions values are not independent

of one another. Instead, they are constrained by the relationship presented in Equa-

tion 2.28 [32]. The reason for this constraint derives from the fact that quaternions

are based on the eigenaxis (ε), and the root sum square of the eigenaxis is also equal

to one.

q̃T q̃ + q4
2 = q1

2 + q2
2 + q3

2 + q4
2 = 1 (2.28)

Thus, the four values that make up a quaternion can be thought of as a four

dimensional array that represents the three dimensional eigenaxis. The inclusion of

the fourth term prevents any singularities from occurring. Recall, that the eigenaxis

method for rotations encounters a singularity when no rotation is needed between

reference frames (Φ = 0). In terms of the quaternions, when Φ = 0, q4 = 1 and

q̃ = 0̄. This avoids the singularity because a unique quaternion vector exists for each

orientation. Therefore, control algorithms can use quaternion vectors solely without

losing knowledge of the satellite’s orientation. A rotation matrix is determined with

quaternions using Equation 2.29. The subscript ‘bi’ denotes the rotation matrix R is

used to convert information from the inertial frame to the body frame. In addition,

I is an identity matrix of rank three.

Rbi = (q4
2 − q̃T q̃)I + 2q̃q̃T − 2q4q̃

x (2.29)

2.3.5 Rotating Quaternions. Quaternions have been shown to successfully

handle coordinate rotations between two reference frames, and these reference frames

allow for 3x1 column vectors of information to be converted from one frame into

another. But the quaternion vector consists of a four terms and not three. Thus,

a specific method needs to be included to describe how to rotate quaternions and

retain information within the vector. This is particular necessary to determine the

quaternion error when the desired quaternions are present.

25

To illustrate how to handle successive rotations with quaternions consider three

coordinate frames: the ‘x’ frame, the ‘y’ frame, and the ‘z’ frame. Let q̄′ be associated

with the rotation matrix from the ‘x’ to the ‘y’ frame, or Ryx, q̄′′ is describes how to

rotate from the ‘y’ to the ‘z’ frame (Rzy), and q̄ correspond to the rotation matrix from

the ‘x’ to the ‘z’ frame (Rzx). In regards to rotations matrices, Ryx and Rzy, could

be used to find Rzx by taking the product of the first two direction cosine matrices.

The difficulty with that method arises when one attempts to keep track of each of the

variables for each of those direction cosine matrices. Each rotation matrix consists of

nine values, six of which are independent. Quaternions only require knowledge of four

values, and only three are independent. The equations to describe the relationship

between the quaternions for the different reference frames are shown in Equations: 2.30

and 2.31 [34].

q̃ = q′′4 q̃
′ + q′4q̃

′′ + q̃′ × q̃′′ (2.30)

q4 = q′4q
′′
4 − (q̃′)T (q̃′′) (2.31)

To simplify these equations one can redefine these relationships into matrix form

as in Equations: 2.32 and 2.33.

q̄ =

q′′4 q′′3 −q′′2 q′′1

−q′′3 q′′4 q′′1 q′′2

q′′2 −q′′1 q′′4 q′′3

−q′′1 −q′′2 −q′′3 q′′4

 q̄
′ = M(q′′)q̄′ (2.32)

q̄ =

q′4 −q′3 q′2 q′1

q′3 q′4 −q′1 q′2

−q′2 q′1 q′4 q′3

−q′1 −q′2 −q′3 q′4

 q̄
′′ = M̃(q′)q̄′′ (2.33)

26

Both M and M̃ are orthonormal which means that the inverse of these matrices

is simply its transpose [31]. Thus, in addition to simplifying the equations into matri-

ces, the matrix form of the equation is computationally more efficient when inverses

are required for the transmuted quaternion matrix, or M̃. This is beneficial as M̃−1

is typically used to determine the quaternion error when the desired quaternions are

present.

2.4 Control Techniques

Coordinate rotations and quaternions play a large role in how to understand and

operate a satellite. Yet the core issue is to ensure the satellite operates as instructed.

That is to mean the satellite must meet required pointing accuracies, be at the right

place at the right time, and performing the way the satellite was designed to. This

is accomplished through the application of controls. Although control techniques

date back to the mid 1800s, the study of control theory did not gain momentum

until the early and mid 1900’s with the study of flight and fire-control systems [35].

Control techniques are split up into two broad sections. Control theory exists for both

linear and non-linear systems. Linear systems must satisfy two properties, namely

additivity and homogeneity. For example, the function f is said to have the property

of additivity if f(x) + f(y) = f(x + y). Furthermore, homogeneity means the the

function is closed under scaler multiplication. Thus if c is a scaler the function f

would be closed under scalar multiplication if f(cx) = c · f(x) [35]. In addition to

linear and non-linear systems, control techniques can be applied to optimize a cost

functional or take advantage of a particular aspect of a system. This section discusses

various control techniques that are used throughout the design of the speed and path

control algorithm.

2.4.1 Linear Stability. The primary function of a control system is to ensure

system stability. In terms of linear systems, three broad terms exist to classify the

stability of a linear system. A linear system can either be unstable, marginally stable,

27

or asymptotically stable [36]. A marginally stable system is usually undesirable be-

cause while the system response remains in the vicinity of the commanded response, a

marginally stable system is unable match the commanded response like an asymptot-

ically stable system can. Stable linear systems are also classified by the order of the

response. A first-order system only has one pole while a second-order system has two

poles. Higher order systems can typically be represented as second-order systems [37].

Most control applications design systems to be second-order systems because these

types of systems can be ‘tuned’ to meet a wide range of different desires.

The generic format for a second-order transfer function is shown in Equa-

tion 2.34. In this equation, ζ is the damping coefficient and ωn is the natural frequency

of the system.

TF =
1

s2 + 2ζωns+ ωn
2

(2.34)

Changing ζ reflects how much damping is present in the system. This in turn,

can drastically change the system performance. When ζ = 0 the system is marginally

stable because the signal never damps out. If the ζ > 1 the system is said to be over-

damped because the system has so much damping that the system takes a significant

amount of time to reach the commanded position. Both un-damped and over-damped

systems are undesirable for most engineering purposes. Most systems are designed

to be under-damped and have the property 0 < ζ < 1. This is because the transient

response of under-damped systems typically contain the fastest characteristics. Lastly,

when ζ = 1 the linear system is considered to be critically-damped. This occurs as

the second order poles transition from an under-damped system to an over-damped

system. When the two poles are under-damped they exist on the left hand side of

the complex plane and have symmetry about the negative real axis. Over-damped

poles lie at different points on the negative real axis. Critically-damped poles exist

on the same spot of the negative real axis of the complex plane. Although knowledge

of the pole locations for a system is important, this knowledge is a little abstract.

28

Another way to observe how damping affects a second-order systems is by observing

the transient response of the system. Figure 2.5 illustrates how the transient response

of second-order systems are affected by ζ.

Figure 2.5: Example of Second-order Responses

When considering the systems transient response, a number of methods are used

to objectively compare system performance. Three in particular are used within this

thesis: rise time, settling time, and percent overshoot. The rise time of a system is

the time needed for the signal to transition from the initial displacement to the final

value. Two methods are typically used to determine this. One can either record the

time from the waveform’s initial displacement to the waveform’s final value, or one

can measure the time required for the signal to transition from 10% of the final value

to 90% of the final value [37]. Settling time is used to measure how long it takes

the signal’s damped oscillations to reach and stay within ± 2% of the final value.

Lastly, the percent overshoot measures how far the signal overshoots the final, or

steady-state, value at the time when the signal is at the highest peak [36]. These

parameters are useful metrics for comparing systems to each other and determining

which response is the best. This is used to determine optimal gains in Chapter III.

29

Nyquist plots are also used to determine the stability of closed-loop systems.

Nyquist plots use the system’s open-loop frequency response and open-loop poles to

provide the phase and gain margins of the system [36]. Stability is determined through

the use of Equation 2.35 where ‘Z’ is the number of closed-loop zeros in the right-half

plane, ‘N’ is the number of clockwise encirclements of the point (-1+j0), and ‘P’ is

the number of unstable open-loop poles.

Z = N + P (2.35)

In addition to determining system stability, Nyquist plots are also used to eval-

uate the system stability margins as well. Gain margins indicate how much open-loop

gain can be applied to or taken out of a system before the system goes unstable. Phase

margins indicate how much delay, or phase, can be applied to the open-loop system to

make the closed-loop system unstable [37]. The phase margin of an arbitrary system

is shown in Figure 2.6.

Figure 2.6: Example of Nyquist Plot

30

On the Nyquist plot the phase margin is determined by finding the angle between

the negative real axis and the point of the open-loop Nyquist response that is on

the unit circle (represented by the dotted line). The gain margin is calculated as

the difference between the point (-1+j0) and point of the open-loop response that

intersects the negative real axis. In addition, gain margins are typically represented

in decibels so this difference would need to be converted as well. The example system

in Figure 2.6 has a 50◦ phase margin and an infinite gain margin.

2.4.2 Lyapunov Stability. As Section 2.5.2 describes, SPHERES’ dynamics

associated with the satellite’s orientation is nonlinear. Thus, before a controller is

designed, it is worth pausing to consider how to stabilize nonlinear systems. Addi-

tionally, since nonlinear systems can contain more complex and exotic behavior than

their linear counterparts, it is worth considering what type of stability is desirable.

Due to the complexity of nonlinear systems, stability is often determined using linear

concepts about equilibrium states found within the system. An equilibrium state is

any state within the nonlinear system that remains stationary for all time if the sys-

tem starts at that equilibrium state. To define stability about an equilibrium point

two regions should be mentioned. Let SR consist of a region around the equilibrium

state that is greater than zero. In addition, Sr is a subset of this region. Figure 2.7

illustrates how these regions are used to determine stability around a particular equi-

librium state.

Stable systems are said to remain with region SR so long as the trajectory begins

within Sr. In essence stability (often referred to as Lyapunov stability) suggests that

a state trajectory (x(t)) will remain in the vicinity of the equilibrium state if the

trajectory begins sufficiently close to it. A system is said to be asymptotically stable if

all state trajectories that begin within Sr return to the equilibrium state. In addition,

a system is said to be globally asymptotically stable if both SR and Sr contain the

entire subspace [4].

31

Figure 2.7: Concepts of Stability

For precise control of satellite orientation, the satellite dynamics are required

to be asymptotically stable. In order to make a system asymptotically stable, an

appropriate Lyapunov function needs to be derived to make the system perform as

desired.

2.4.3 Lyapunov Functions. Lyapunov functions are used to determine the

stability of a nonlinear system. By implementing the control law into the Lyapunov

function as done in Section 3.2.4, Lyapunov equations can be used to stabilize the

system. Lyapunov functions are defined by the properties carried within the function.

If a function meets these properties it is considered to be a Lyapunov function. A

Lyapunov function, V, is a scalar function with continuous partial derivative such

that the function is positive definite and the rate of the function, V̇ , is negative semi-

definite. If the system can be represented as a Lyapunov function then the system is at

least Lyapunov stable. Furthermore, a system is found to be globally asymptotically

stable if V̇ is negative definite [4]. Thus, if a positive definite Lyapunov function with

a negative definite rate can be applied to a particular nonlinear system, that system

is globally asymptotically stable. Lyapunov functions can be used in this manner

32

to determine an appropriate control law to make a nonlinear system asymptotically

stable. Yet before this can be done one should understand how to classify matrices

as positive or negative definite.

2.4.3.1 Definite Matrices. The definiteness of a matrix allows one to

understand what values that matrix will generate in quadratic form. An example of

a quadratic function is shown in Equation 2.36.

F (x̄) =
1

2
x̄TAx̄ (2.36)

F (x̄) can either be positive, negative, or zero. Knowledge of the definiteness

of a matrix allows one to know what values F (x̄) can take on for any x̄. A positive

definite matrix indicates F (x̄) will be a positive for all values of x̄ except x̄ = 0̄ [38].

In addition, a negative definite matrix means F (x̄) will be negative whenever x̄ 6= 0̄2.

To determine whether a matrix is positive or negative definite one must calculate the

eigenvalues of the matrix.

A positive definite matrix consists of only positive eigenvalues, and a negative

definite matrix contains only negative eigenvalues [4]. Although other types of definite

matrices exist, these two types are particularly useful for Lyapunov functions and for

the design of the quaternion controller in Section 3.2.4. In addition to understanding

general stability criterion for both linear and nonlinear systems, two specific types

of control techniques are of particular use for commanding SPHERES: bang-bang

control and the linear quadratic regulator.

2.4.4 Bang-Bang Control. SPHERES achieves any rotation and translation

by firing combinations of its twelve cold gas thrusters [2]. These thrusters either fire at

a specific value or they do not fire at all. This on-off discontinuity is often dealt with

bang-bang controllers. Bang-bang controllers are a feedback controller that sharply

2When x̄ = 0̄ the matrix A has no affect of F (x̄).

33

switches between two states, such as an on and off command. An example bang-

bang controller is found within many household thermostats. If the temperature is

below a specific value the heater is commanded to operate and raise the temperature.

Likewise, if the temperature of the house is above a set temperature, the thermostat

commands the air conditioning unit to cool the house. If the temperature value

used to trigger the heater was the same value as the one used to trigger the cooling

unit, either of the two units would be running at any given time. This is because

anytime the temperature was not perfectly maintained the controller would command

the appropriate unit to adjust the temperature. In order to prevent this a dead-

zone is implemented to provide a gap in which neither unit is commanded to fix the

temperature. This is discussed further in Section 3.2.6.1. Bang-bang control also uses

previous knowledge of the states to operate. One way to do this is to consider the rate

of change for the state as the actual state. In this fashion, the control designer has

the ability to ‘look-ahead’ and predict how the states are going to change an adjust

accordingly. This is analogous to approaching a stop sign when driving a car. When

approaching a stop sign the driver considers how fast they are approaching the sign

and applies the brakes as necessary. The same concept applies to bang-bang control.

This concept is depicted by observing the relationship between the state and the rate

of change of a state in the phase plane. Figure 2.8 illustrates how a system with

bang-bang control would appear on a phase plane.

Figure 2.8 shows a one dimensional case for the relationship between the posi-

tion and velocity error of a sample spacecraft. In this sample the spacecraft begins

with a positive position and velocity. As time progresses the velocity error improves

for a time and then becomes more negative to correct the position error. As this

relationship passes the switching line the priority shifts to correct the position error.

The controller switches between which error has correction priority based on where

the relationship of position and velocity error is with respect to the switching line.

Eventually, due to the nature of the bang-bang controller, the controller gets to a

point where further improvements on the state errors result from switching correc-

34

Figure 2.8: Example Phase Plane of Look Ahead Controller [3]

tion priority rather quickly. This results in an undesirable amount of fuel use and

is known as chatter. A dead-zone is implemented to minimize the effects of chatter

and is described in Section 3.2.6.1. Further use of bang-bang control is mentioned in

Section 3.2.1 when the translational controller is developed. In addition to bang-bang

control, the linear quadratic regulator is also considered to provide optimal control to

SPHERES.

2.4.5 Linear Quadratic Regulators. One method for developing optimal con-

trol is the use of the Linear Quadratic Regulator (LQR). This form of control optimizes

controller gains to minimize a quadratic cost function. So long as the quadratic cost

function accurately reflects the designer’s concept of ‘good’ performance, the LQR

will provide the optimal gain to minimize the cost function and best reflect the user’s

desires [39]. LQR controllers perform well in conjunction with a Linear Quadratic

Estimator (LQE), or Kalman filter, because the filter is able to compensate for ran-

dom initial conditions and inputs (disturbances and measurements) corrupted with

white noise. The union of the LQR and the LQE form the Linear Quadratic Gaus-

sian controller which is the optimal control solution when noise is present throughout

the system [39]. Since the SPHERES estimator handles the random disturbances,

35

LQR design is particularly useful in the application of controlling the linear portion

of SPHERES.

In regards to SPHERES, the LQR minimizes the cost functional, J, shown in

Equation 2.37. The cost function is split into two sections. Given an initial state

error, the first part is used to evaluate the cost induced from the state error during

the controller’s operation. The second term in the integrand is used to penalize how

much control is required to return the system to the nominal state.

J(x(t), u(t)) =
1

2

∫ ∞
0

{xT (t)Qx(t) + uT (t)Ru(t)}dt (2.37)

The weighting matrix Q is applied to minimize the state error while the matrix

R is selected to minimize control usage. Both matrices are picked by the designer and

are typically diagonal matrices. Higher values of each mean a higher cost is assigned

to that portion of the solution. The Q and R matrices are used to balance perfect

performance against system efficiency. If a designer desired to have minimal error on

the states they would use a Q that was relatively larger than R. This would force the

LQR to sacrifice control usage to meet the demand of small error. Likewise, if if there

exists a desire to conserve control usage to save fuel usage or extend the lifetime of a

system, larger emphasis needs to be placed on minimizing control usage by assigning a

larger R. Regardless of the designer requirements, the importance of Q and R is not

in the actual magnitudes within matrices. Instead the designer should be concerned

with the ratio between Q and R. This is because the value of J is arbitrary and

only useful to compare solutions with the same Q and R matrices. Certainly, if large

Q and R weights were used the cost function would be high. But J would be high

for any of the solutions with the same Q and R. Because J is linear in Q and R,

the optimal solution to the cost function with the large Q and R would be the same

solution as the optimal one for a different Q and R so long as the ratio between each

of the Q and R matrices was preserved [39].

36

Not only does the LQR minimize the cost functional of Equation 2.37, but the

LQR also produces the optimal steady-state gain matrix, K. This is achieved through

the use of Equation 2.38.

K = R−1Bu
TP (2.38)

The optimal steady-state gain matrix is generated with the LQR control weight,

the control input matrix and P. The matrix P is the solution to the algebraic Riccati

equation shown in Equation 2.39. The algebraic Riccati equation is found by setting

the Riccati differential equation equal to zero [39]. Once P is determined, the optimal

feedback gain is calculated via Equation 2.38.

PA + ATP−PBuR
−1Bu

TP + Q = 0 (2.39)

Another advantage to the LQR is that this controller is particularly robust.

The linear quadratic regulator is guaranteed to have a upside gain margin of ∞ and

a downside gain margin ≤ 1
2

= −6dB. In addition, the LQR ensures the system has

a phase margin ≥ 60◦ [35]. The stability margins from the LQR can also be used to

provide a sort of best case for nonlinear systems as mentioned in Section 3.2.1.

The control techniques discussed throughout this section are used in the design

of the speed and path control algorithm. Before designing the controller the plant

must be fully characterized as described next.

2.5 Modeling SPHERES Plant

While the majority of this thesis is dedicated to describe the development of the

speed and path control algorithm, the SPHERES plant is also constructed for simu-

lation in this thesis. The description of the plant is developed based on information

supplied. The plant is a crucial piece of the simulation, but the design of the plant

is not the focus of this research and is therefore included in this background chapter.

37

Nonetheless, the author believes the control algorithm can best be understood when

the plant that the algorithm is supposed to control is fully appreciated. Figure 2.9

illustrates how the SPHERES plant is divided for the purposes of this discussion as

well as within simulation.

Figure 2.9: Simple Diagram of Plant

Due to the thruster spatial arrangement (as seen in Table 2.1), the system

dynamics determining how each SPHERES translates and rotates are mostly decou-

pled. This means that the SPHERES plant can be divided into two components.

One relates to the translational components of SPHERES, and the other relates to

the rotational components of SPHERES. Section 2.5.1 describes how the rates of the

SPHERES position and velocity are modeled. Section 2.5.2 illustrates how to deter-

mine the quaternions and the angular rates to understand the satellite orientation.

Lastly, Section 2.5.3 specifies how the thrusters are interpreted into corresponding

torques and forces applied to the satellite.

Additionally, it should be noted that the only relevant external force applied to

the satellite is the force generated from the thrusters. Other forces typically known to

affect relative satellite motion result from J2, atmospheric drag, and the approxima-

tion of the orbital motion described by Kepler shown through the Clohessy-Wiltshire

equations. These effects are ignored for a number of reasons. Air drag does affect

SPHERES operating inside the ISS however, for this application due to the relatively

low speeds, drag is significantly smaller than the force generated by the thrusters [2].

Thus, it is ignored for simplicity within this simulation since any drag in real tests

38

can be thought of as a disturbance which can easily be overcome with the thrusters3.

Furthermore, the longest run time of any SPHERES test inside the ISS has been

six minutes, but the tests typically run two to four minutes in length. In this time

period, orbital motion described by the Clohessy-Wiltshire equations cause a forma-

tion of two satellites to transition approximately five centimeters. This results in a

0.2mm
s

change in velocity. Since the SPHERES thrusters produce a change in velocity

approximately fifty times greater, the orbital motion approximated by the Clohessy-

Wiltshire equations have been ignored. The precession of SPHERES’ orbital plane

due to the oblateness of the Earth has also been neglected in the plant model. This

can be ignored since all of the coordinate frames are, for all intents and purposes,

equally affected by J2 for the duration of SPHERES tests.

2.5.1 Position & Velocity Model. The translation component of SPHERES

consists of a position and a velocity vector. Since Newton’s Second Law is the fun-

damental equation governing how the satellite translates, the position and velocity

states are modified in the global reference frame. Equation 2.40 identifies how the

position and velocity vectors are identified in the state vector of the SPHERES’ plant.

X̄ =

x1

x2

x3

x4

x5

x6

=

X Position

Y Position

Z Position

X V elocity

Y V elocity

Z V elocity

Global Frame

(2.40)

Newton’s Second Law (Equation 2.1) is linear in the global frame the transla-

tional component of the state vector, X̄, is a linear system as well. Thus, the rate of

the state vector (˙̄X) is represented in state-space form in Equation 2.41.

3Ignoring air drag does mean the simulation does not exactly match reality. Thus, future research
could be done to make this simulation a better model of reality by including air drag effects.

39

˙̄X = AX̄ + Bū (2.41)

Ȳ = CX̄ + Dū (2.42)

The A matrix displays how the states affect one another and the B matrix

identifies how the control affects the system. As previously stated, this thesis does

not consider the estimator and assumes the controller has access to full-state feedback,

and that the control has no direct affect on the measurement Ȳ . Therefore the output

Ȳ is X̄. In order to determine the values in matrices A and B, all the forces need to

identified on SPHERES, which in this case are the forces generated from the thrusters.

This results in the following state-space matrices for Equation 2.41:

A =

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

(2.43)

B =

0 0 0

0 0 0

0 0 0

1/m 0 0

0 1/m 0

0 0 1/m

(2.44)

The rate at which the position changes is directly a result of what the satellite’s

velocity is. In addition, the rate of change of the velocity is only a function of the force

generate by the thrusters and the mass of the satellite. Recall that the state-space

40

matrices update states in the global frame though. As a result, the forces generated

from the thrusters must be rotated from the body frame to the global frame. This is

accomplished using the quaternions to generate a rotation matrix via Equation 2.29.

Since the position and velocity of SPHERES is used to determine where one satellite

is relative to the other, the term translational states is used to quickly refer to the

first six states of the SPHERES state vector which is the position and the velocity of

the SPHERES satellite.

2.5.2 Model for Quaternions & Angular Rates. The rotational component

of the plant model consist of the quaternions and angular rates (ω̄). Although there

are four quaternions, only three angular rates exist. These values correspond to how

fast the body frame axes are rotating. These values make up the last seven of the

thirteen values in the state vector shown in Equation 2.45, and are referred to as the

rotational states.

X̄ =

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

x11

x12

x13

=

X

Y

Z

Ẋ

Ẏ

Ż

q1

q2

q3

q4

ωX

ωX

ωX

Global Frame

(2.45)

41

The rate of change for the quaternions are split into two equations. The first

three quaternions (q̃) are governed by Equation 2.46 while the fourth quaternion is

regulated by Equation 2.47 [32].

˙̃q =
1

2
(q4)ω̄ − ωxq̃ (2.46)

q̇4 = −1

2
ω̄T q̃ (2.47)

The term ωx is the skew symmetric representation of the angular rates. Equa-

tions 2.46 and 2.47 show that the quaternions depend on that angular rates of the

body frame axes. The equation for the angular rates are derived from the applied

external moments generated from the thrusters. The external moments, M̄ , are

equivalent to the change in angular momentum, ˙̄H as shown in Equation 2.48 where

the term MOI represents the satellite’s mass moment of inertia.

M̄ = ˙̄H = MOI ˙̄ω + ωxMOIω̄ (2.48)

Furthermore, for the application to SPHERES, the only external moments ap-

plied on the satellite come from the thrusters. This results in Equation 2.49 where the

term ū is a 3x1 vector containing the applied torques derived from the thrust profile.

M̄ = ū (2.49)

Combining Equation 2.48 and Equation 2.49 results in the rate of ω̄, as shown

in Equation 2.50.

˙̄ω = MOI−1(ū− ωxMOIω̄) (2.50)

42

Thus, with Equations 2.41, 2.46, 2.47 and 2.50, the entire state vector can be

determined for any point in time assuming one has knowledge of the current state

vector, the physical properties of the satellite, the forces and torques generated from

the thrusters, and the initial values of the rotational states. The first two items are

either determined by an estimator, or are known constants. The forces and torques

then must be determined from the thrust profile.

2.5.3 Determining How Thrusters Rotate and Translate SPHERES. The

SPHERES plant does not directly interact with the controller to determine how to

rotate and translate. Instead the plant rotates and translates based on the torques and

forces that the thrusters induce onto the SPHERES system. In terms of the SPHERES

simulation, the control signal must be interpreted the same as in reality. Therefore,

the control algorithm output commands must be converted into a thrust vector. This

thrust vector uses ones and zeros to represent which thruster is firing. The plant

model must then interpret this signal to determine how the thrusters are moving the

satellite. The thrust vector is a column vector containing twelve elements. The first

element in the array refers to SPHERES thruster zero and the twelfth element in the

vector refers to SPHERES thruster eleven4. Any value of one means that particular

thruster is firing while any value of zero implies that specific thruster is off. The

simulation uses a number of logical (‘if’) statements to determine whether or not the

satellite is rotating and/or translating based on which thrusters are firing. Table 2.1

shows how the thrusters cause SPHERES to rotate and translate.

For example, if SPHERES fires thrusters numbered four and five the satellite

translates along its ‘Z’ body-axis, where as if SPHERES fires thrusters four and eleven

then the satellite would rotate about its ‘X’-axis. As mentioned, the simulation uses

a series of logical (‘if’) statements to determine the nominal rotation and translations

in the body frame. Once each rotation and translation has been determined about

4The numbering scheme of 0-11 was retained to be consistent with the SPHERES hardware and
C++ code.

43

Table 2.1: Thruster Effects in the Body Coordinate Frame [5]

Thr# Nominal force direction Nominal torque direction

x y z x y z

0 1 0 0 0 1 0
1 1 0 0 0 -1 0
2 0 1 0 0 0 1
3 0 1 0 0 0 -1
4 0 0 1 1 0 0
5 0 0 1 -1 0 0
6 -1 0 0 0 -1 0
7 -1 0 0 0 1 0
8 0 -1 0 0 0 -1
9 0 -1 0 0 0 1
10 0 0 -1 -1 0 0
11 0 0 -1 1 0 0

each axis in the body frame, the values are then modified by a gain to scale them to

correspond with an actual force or torque. The gain to adjust the force and torque

signals is derived from the physical thruster location on SPHERES with respect to

the center of mass. Figure 2.10 depicts the geometry of the thrusters causing a force

and a torque on the satellite.

Figure 2.10: Thruster Location on SPHERES

44

Each force signal sent to the plant is the combination of two thrusters. Thus,

each force signal is modified by ‘2F’ where ‘F’ is the amount of force generated from

one thruster. In addition, each torque comes from the moment generated by two

thrusters. Therefore, assuming the center of mass is at the geometric center, the sum

of these two moments generates a torque with the magnitude of ‘F`’ where ‘`’ is the

diameter of the satellite, as shown in Figure 2.105.

Lastly, there are some hardware specific aspects of the plant that have yet to

be described. Specifically, the periodic signal suppressor and saturation which are

unique to this application need to be addressed. These nonlinearities are discussed

with the controller nonlinearities of Section 3.2.6 because these nonlinearities as well

as the other controller nonlinearities are directly applied to the control signals.

As the discussion of the SPHERES plant concludes, this research uses the tech-

niques discussed within Chapter II and applies these concepts to create a speed and

path control algorithm. Furthermore, the simulation used to operate the control

algorithm is also developed and discussed in Chapter III.

5In reality SPHERES center of mass is 1.68 mm from the geometric center without fuel and 4.20
mm away when loaded with fuel [2]. This creates a small time dependent coupling of translation
and rotation. These small effects are treated as disturbances.

45

III. Methodology

This chapter outlines the general procedure for designing a speed and path control

algorithm for MIT’s SPHERES program as well as implementing the algorithm into

a simulation using the SIMULINK R© program in MATLAB R©. A basic model of this

simulation can be seen in Figure 3.1. This figure shows four blocks that summarize

how SPHERES is to be controlled. SPHERES itself, or the plant, contains all the

information about the satellite responds when its thrusters are fired. The equations

and nonlinearities of this system are described in Section 2.5 and are not covered in this

chapter. The determine errors block determines the relevant state errors by processing

information from the user commands and the current state vector. The controller then

drives those state errors to zero by generating the thrust profile necessary to move the

satellite as the user desires. This process is of course iterative as each force and torque

generated from the thrusters changes SPHERES states which must be re-evaluated

to ensure the satellite is where it is supposed to be.

Figure 3.1: Simple Control Diagram for Simulation

Although Figure 3.1 illustrates the basic diagram for the SPHERES simulation

developed in this thesis, SPHERES actually includes an estimator as well. Since

the purpose of this thesis is to create a speed and path control algorithm for the

SPHERES program, the simulation used to develop the controller does not include

the estimator as it is assumed for this simulation that the estimator can provide the

full-state feedback to the controller without any errors. While no estimator is truly

46

perfect, the SPHERES estimator currently in use is robust enough to generate the

state values of the satellite for the applications of SPHERES [2]. With that in mind,

the simulation described in this chapter follows the model presented in Figure 3.1.

This chapter is broken down into three sections. Section 3.1 covers how the

simulation determines the state errors that the controller will need to drive to zero,

and Section 3.2 describes the control algorithm block in Figure 3.1. In addition,

Section 3.3 covers the User Commands block in Figure 3.1, and details what users

would typically command and how those commands would be fed into the Determine

Errors block.

3.1 Error Determination

This section discusses what is needed to determine the errors between the desired

states and the current states of the satellite. While this is traditionally performed by

finding the difference between the desired values and the current values of interest,

this is not always the case for this application. Furthermore, when this method

is appropriate, the desired values must then be conditioned before the errors are

sent to the controller. The SIMULINK R© simulation performs this task in the ‘Error

Determination’ block, and the associated diagrams are included in Appendix B.1.

Since the method to determine the position and velocity errors is different from the

method to determine the quaternion error, each will be discussed separately.

3.1.1 Relative Errors. At this stage in the algorithm, the desired and actual

values for the position and velocity of the SPHERES satellite are in the global frame.

Thus, the difference of these vectors is used to determine the error between these

vectors as shown in Equation 3.1.

X̄error = X̄desired − X̄actual (3.1)

47

While this equation is straight-forward it is useful to note that the error formed

by this equation still retains similar properties to the values used to create the error.

To illustrate this, both the desired position and current position are vectors that

represent where the satellite should be and where the satellite is located define by

the body frame coordinate system. Thus, the position error is also a vector in the

body frame that represents where the satellite needs to move to be in the desired

position. The same is true for the velocity information. Lastly, if either the position

or velocity error vectors are zero, then the satellite is in the correct position or velocity

respectively.

Before the error can be input into the controller however, the error must be

converted into the satellite’s body frame because that is the coordinate frame used

to operate the thrusters. This is completed by pre-multiplying the satellite’s rotation

matrix, Rbi, with the position and velocity errors. This matrix is determined using

Equation 2.29 from Section 2.3.4 with the current quaternion values found in the

satellite’s state vector.

3.1.2 Pointing Error. In the general case, pointing accuracy is degraded

through three different methods as shown in Figure 3.2. The knowledge error refers

to errors between the estimate of how the satellite is oriented and how the controller

believes the satellite is oriented. This error is minimized through the estimator. In

regards to this simulation, the estimate and true orientations of the satellite are always

the same since full-state feedback is used without any noise. Since the knowledge error

is dependent on the estimator, this error is ignored for this research. The control error

is the difference between where the controller thinks the satellite is pointing and where

the satellite should be pointing. As the name implies, this error is directly related to

the performance of the control algorithm. Thus, reducing this error is the focus of the

quaternion controller. Since this simulation has no knowledge error, the control error

is synonymous with the satellite pointing accuracy. The stability of the true vector is

the concern of the third error.

48

Figure 3.2: Sources for Orientation Error

Although controllers and estimators can command the true vector to line up

with the target vector, the true vector is not perfectly parallel with the target vector.

In fact, the true vector will move around the target vector in a small cone as the true

vector is being adjusted to make the two vectors parallel. This results in the true

vector appearing to ‘jitter’ about the target (‘S’ in Figure 3.2). This jitter may or

may not be an issue though. Sensitive sensors demand that the jitter be corrected.

However, this is not an issue if the field-of-view is larger than the error generated from

jitter, and if the sensor has a high enough frame rate to ensure the motion from jitter

does not cause a blurring effect. Since this error is payload dependent it is usually

corrected with a specific payload controller that damps out any vibrations or other

disturbances produced by the satellite. Since a specific sensor package has not been

suggested for this controller the author chose to confine the allowable jitter to a two

degree field of view. This restriction allows most sensor applications to be applied

to SPHERES that are capable of being installed on SPHERES without wasting an

excessive amount of fuel to correct the remaining jitter can be handled by the sensor.

In any case, the pointing error that needs to be fixed is the control error (‘C’ in

Figure 3.2). This is corrected by determining the quaternion error.

49

3.1.3 Quaternion Error. While calculating the relative errors are relatively

intuitive before the coordinate transformations, the method to determine the quater-

nion error is a little more abstract. This is because the quaternion error is itself a

quaternion vector that describes how to rotate from the satellites’ current position

to the desired position. Recall that quaternions, by design, always have a magni-

tude of one to avoid singularities. Since the quaternion error is still a quaternion in

and of itself, the quaternion error must have a magnitude of one as well. Therefore

the simple error calculation found in Equation 3.1 does not work for quaternions as

the difference between the desired quaternions and the current quaternions would not

necessarily result in a quaternion vector that described how the satellite should rotate

to get into the desired orientation. Thus, a separate equation is used to determine

the quaternion error, q̄error.

The quaternion error is traditionally found by using the desired quaternions

to populate the transmuted quaternion matrix discussed in Section 2.3.5. In this

application however, that information is not provided. Instead, three vectors are

available. Both position vectors of the object and the satellite are provided in the

global frame. In addition, the user has supplied a pointing vector in the body frame.

This pointing vector specifies what part of the satellite is supposed to face the object

of interest (typically the target). The quaternion error should describe how to rotate

the satellite so that its pointing vector is facing the target. To do this two vectors

are needed in the body frame: the target vector and the pointing vector. The target

vector is generated by taking the unit vector that results from the difference between

the position vector of the object the satellite is suppose to face and the position vector

of the satellite. This difference is calculated in the global frame and converted to the

body frame. The cross product of the target and pointing vectors produces a vector

that is normal to the two vectors, which can be used as the eigenaxis of rotation.

The principal Euler angle is then the angle between the two vectors. Equation 3.2

shows how to determine the principal Euler angle from the target vector, T̄ , and the

pointing vector, P̄ .

50

Φ = acos(
T̄ · P̄

|| T̄ |||| P̄ ||
) (3.2)

The eigenaxis of rotation and principal Euler angle are then converted into

quaternions. This is accomplished using the equations presented in Section 2.3.4.

Recall, that the eigenaxis method of rotation produces a singularity when no rotation

is required. This occurs because the vector for the eigenaxis of rotation could point in

any direction. This singularity is avoided through the use of a cross product however.

This is because no rotation would mean that the target vector and the pointing

vector are parallel, and the cross product of two parallel vectors results in a zero

vector. Thus, the quaternion vector formed from this eigenaxis and principal Euler

angle always accurately reflect the required rotation to maneuver from the current

orientation to the desired orientation. Once the quaternion error is computed and the

translational errors have been rotated into the body frame, the errors are sent to the

speed and path control algorithm to minimize the errors in the satellite’s position,

velocity and orientation.

3.2 Control Algorithm Development

With an understanding of the state errors, the Speed & Path Controller com-

partment in Figure 3.1 now has the necessary information to generate the control

force and control torque signals. This section discusses the speed and path control

algorithm as a whole and then briefly discusses how each sub-section is broken down.

The speed & path control algorithm discussed herein commands SPHERES’ location

and orientation by using two independent controllers. One controller modifies the

translational states by using a look ahead controller with optimal gains determined

by a Linear Quadratic Regulator to control the position and velocity of the satel-

lite’s location. The other controller drives the first three quaternion errors to zero by

producing a stable control law based on a Lyapunov equation. Figure 3.3 displays a

diagram of how these controllers appear in the simulation.

51

Figure 3.3: Diagram of Position, Velocity, and Quaternion Controllers

The control algorithm encompasses four major components which each accom-

plish a separate objective. The procedure for the translational controller is discussed

in Section 3.2.1, while selecting the optimal values for this controller is covered in Sec-

tion 3.2.2. The methodology for the quaternion controller is explained is Section 3.2.4,

and the selection of this controller’s optimal gain value is covered in Section 3.2.5. In

addition to the discussion of controllers, the controller nonlinearities are included in

Section 3.2.6, and the logic to generate the thrust profile is conveyed is Section 3.2.7.

3.2.1 Translational Position & Velocity Controller. The control algorithm

commands the satellite’s position and velocity in the body frame by using a bang-

bang controller with weights determined through an LQR. The bang-bang controller

design is used partly because this represents what the thrusters physically are, and

partly because this technique allows one to incorporate the velocity control relatively

simply through the use of a ‘look-ahead’ gain, τ . Details of this type of controller can

be found in Section 2.4.4. Adjusting τ changes the slope of the switch line for the

control algorithm as described in Equation 3.3.

Mswitchline =
Kposition

Kvelocityτ
(3.3)

52

Equation 3.3 shows that an inverse relationship exists between slope of the

switch line, Mswitchline, and τ . The additional two terms are gains that weight position

and velocity1. Recall that adjusting the switch line shifts the importance of correcting

position versus velocity. In essence, τ provides users with a ‘knob’ to adjust which

parameter is more desirable to correct: position or velocity.

In addition to the bang-bang controller an LQR is implemented into the control

algorithm to make the design more robust. Recall from Section 2.4.5 that the LQR

provides guarantees of the gain and phase margin of the system. This is accomplished

through weighting position, velocity, and control. Figure 3.4 shows a sample case of

how an LQR is used to control the position and velocity error of SPHERES.

Figure 3.4: Translational Controller without Nonlinearities

The example in Figure 3.4 only considers one dimension for translating SPHERES,

and does not include system nonlinearities. The simulation begins with SPHERES at

the origin with an initial velocity of 0.1m
s

. At five seconds SPHERES is commanded

to travel at 0.3m
s

for forty seconds before slowing back down to the initial speed.

1These terms are the optimal gains derived from the LQR discussed later, and are included only
to provide an accurate description of Mswitchline.

53

Figure 3.4 shows the best-case response characteristics that the nonlinear controller

can achieve since introducing the nonlinearities inherent within SPHERES can only

degrade system performance. In addition to the time response of the system, the

phase and gain margins of this example can be seen in the Nyquist plot of Figure 3.5.

Figure 3.5: Nyquist Plot of LQR Controller without Nonlinearities

Figure 3.5 verifies that the LQR controller does in fact meet the minimum

guarantees as the phase margin is greater than sixty-five degrees and the system

has infinite gain margin. This is important because Nyquist techniques for stability

analysis cannot be applied to nonlinear systems. These margins provide the best

case scenario that any controller could mimic with nonlinearities present. Thus, the

robustness inherent within these margins indicate that the a comparable nonlinear

system could still possess some level of robustness when noise is present. The next step

is to compare this sample response (Figure 3.4) with a more realistic model. To do

this the controller will need to include the nonlinearities discussed in Section 3.2.6. As

expected, once the nonlinearities are introduced however, the controller performance

is degraded.

54

Figure 3.6: Translational Controller with Nonlinearities

Figure 3.6 displays system performance when the non-linearities discussed in

Section 3.2.6. The largest contributor to degrading system performance is from the

periodic signal suppressor (discussed in Section 3.2.6.4) because this limits the amount

of time the controller can run. Since the nonlinear controller is only running 40% of

the time that the linear controller runs, the nonlinear controller requires more time to

fix the same amount of error. Although the system is stable, the transient response

of the system are not particularly stellar. The transient response characteristics of

the translational controller can be adjusted by changing the slope of the switch line

and modifying the state and control weighting matrices with the LQR component of

the controller. Section 3.2.2 discusses how the optimal values are determined for the

LQR matrices, and Section 3.2.3 discusses how to best optimize τ to determine the

best slope for the switch line for system performance. This is done in reverse order

because the ratio from the LQR gains also affect the slope of the switch line as seen

in Equation 3.3.

55

3.2.2 Optimal Weighting for LQR. As previously mentioned, the LQR

algorithm is a prescriptive method to optimize the controller to minimize the cost

function, but the particular weights on each of the states (Q) as well as the control

(R) still need to be determined to ensure the controller meets design goals and stays

within control limitations. In order to determine the Q and R weighting matrices

for the LQR algorithm, a MATLAB R© simulation was developed to take the current

one-dimensional position and velocity controller and vary the weights for the states

associated with position (Q1) and velocity (Q2) as well as the weighting for control

(R1). These weights form the Q and R matrices as shown below.

Q =

Q1 0

0 Q2

 (3.4)

R =
[
R1

]
(3.5)

It is useful to identify the performance parameters that will allow the controller

to be shaped to desired design goals. Recall that the SPHERES program requires the

ability to handle multiple changes in velocity as a satellite moves along the desired

path. This desire is harder to achieve when the position and velocity errors are not

corrected in a timely manner. Since the LQR algorithm is being applied to reduce the

position and translational velocity errors, the transient response characteristics such

as settling time and percent overshoot become the driving performance parameters to

select the Q and R weights. Figure 3.7 below shows a system response of the errors

in translational position and velocity in a simulated one-dimensional case.

In this sample case, a desired velocity change of 0.2 meters per second was

commanded one second into the simulation. This can be easily seen in the velocity

error as there is a sudden error of 0.2 at one second. In addition, the position error is

almost a meter off before the controller compensates for the overshoot. Furthermore,

both the position and velocity errors take over thirty seconds to be within 2% error.

56

Figure 3.7: Sample Response for Position and Velocity Errors

Now it is important to note that the SPHERES are capable of a max change in velocity

of 0.01 meters per second in a 0.4 second interval. Therefore the commanded input to

instantly change velocity by 0.2 meters per second would be a bit of an unreasonable

command if these changes weisat distinction is of importance to users creating paths

for SPHERES to operate on, as the SPHERES acceleration is limited and should be

taken into account for path and speed planning2. In regards to finding the optimal

weights for the Q and R matrices, the actual values for the percent overshoot and

settling time of the translational errors are not important so much as how the values

compare to the other values in a test run. As such, the values for percent overshoot

and settling time are normalized to allow for ease of analysis and comparison on plots.

Since each weight placed on the optimal controller is only relevant when considered

with the other weights placed on the controller, the ratios between these weights are

of more interest than the individual weights themselves. Thus, while the position

weight, the velocity weight, or the control weight could each be adjusted, only the

ratio of the weights to each other affect the LQR controller. In addition only two

2If SPHERES is subject to user imposed rate limits (discussed in Section 3.2.6.3) then those
limits must also be considered for speed and path planning.

57

independent ratios are of any use as any other ratio derived from three variables is

redundant. Therefore, to begin the test the user has the option to manipulate two

independent ratios or two knobs to adjust and determine the optimal weights for Q

and R. For the first test, the author chose to vary the weighting ratio between the

control and position weights or R1/Q1, and for the second test the author chose to

use the ratio between the velocity weight and the position weight or Q2/Q1. Since

each test only changed one of the two available ratios or knobs, the other knob was

left stationary. Since no information of an optimal ratio was available for the first test

the second ratio of Q2/Q1 was set to a value of one. For the second test, the ratio of

R1/Q1 was set to a constant value equal to the optimal value derived from the first

test. Figure 3.8 shows the first test run. Each case considered one thousand linearly

spaced ratios between the values of 0.0014 and 1.4 because this range contained all

the tradeoffs that were to be considered based on the performance parameters.

Figure 3.8: Performance Characteristics as R1/Q1 Changes & Input is 0.2 m/s

This plot shows that as the ratio of the control weight over the position weight

increases, the percent overshoot of the velocity error decreases while the settling

time of both of the errors increases. The percent overshoot of the position error

58

and the amount of time the thrusters fired both remain constant and do not change

with respect to the weighting ratio tested. Additionally, the max values of each

performance parameter located in the legend allows one to compare how significant

each parameter is under these conditions. For this test case only three parameters

were changed, the percent overshoot of the velocity error as well as the two settling

times. In addition, there is a tradeoff between fixing the percent overshoot versus

the two settling times because as the ratio of the control weight to the position

weight increases, the percent overshoot of the velocity error drops and the two settling

times increase. The opposite is true when the weighting ratio is lowered. Since a

percent overshoot of 11% is not going to prevent the SPHERES from performing

well, and the settling times of thirty and sixty seconds could, the author chose to

fix the settling times. Therefore this plot would suggest that the best weighting

ratio would be for the control ratio to be really low compared to the position error

weight. But this test was run when the commanded velocity was 0.2 meters per second

which the author is assuming would be the highest instant change in translational

velocity that one would command for SPHERES in non-typical circumstances (non-

typical because the SPHERES physically takes about a minute to catch up with

the command, which is one-sixth of the normal SPHERES test runs). How do the

system response characteristics affected when the commanded velocity changes are in

a typical operating range? Figure 3.9 and Figure 3.10 show how the system changes

for smaller inputs.

The most noticeable difference in these plots is the change in the settling time of

the velocity error. While commanded velocity inputs of 0.2 and 0.05 meters per second

(Figure 3.8 and Figure 3.10 respectively) indicate the ratio of the control weight to the

position error weight should be as low as possible to minimize the settling time of the

velocity error, the settling time of the velocity error actually increases as the weighting

ratio decreases below 0.4 when a commanded velocity value is 0.1 meters per second

as seen in Figure 3.9. The other noticeable difference is in the percent overshoot of

the velocity error. Although this system parameter continues to display an indirect

59

Figure 3.9: Performance Characteristics as R1/Q1 Changes & Input is 0.1 m/s

Figure 3.10: Performance Characteristics as R1/Q1 Changes & Input is 0.05 m/s

60

relationship with the weighting ratio as the commanded change in velocity changes

value, the shape at which this parameter follows exhibits a larger drop when the ratio

is below 0.2. These two differences indicate that the control to position weighting

ratio should not be as low as possible as in the case for when the commanded change

in velocity is 0.2 meters per second. In addition, with the case 1 when the change in

velocity was 0.2 meters per second, the author placed more emphasis toward fixing

the settling times than the percent overshoot of the response of the errors as the

settling times of the response continue to have a larger impact on the overall function

of SPHERES than the percent overshoot does. Furthermore, when the commanded

change in velocity is 0.05 meters per second and lower the actual values of the system

parameters considered are all within acceptable regions regardless of what the weight

ratio is. Therefore the difference between the control and position error weights for

the LQR controller has the most impact with the desired change in velocity is between

0.05 and 0.2 meters per second as in Figure 3.9. In these instances the author chose to

prioritize the settling time of the velocity error over the settling time of the position

error since this control algorithm is primarily tasked to control the velocity error.

Therefore the author chose to select the ratio of the control weight to the weight of

the position error to be 0.3.

With the ratio between the control and position error weights determined, the

next step was to pin down an acceptable ratio between the weights of the velocity

and position errors. For these simulations the ratio between the weight of control and

position error was preserved at 0.3. The procedure for determining the ratio between

the weight for the velocity error (Q2) and the weight for the position error (Q1) is

similar to that of finding the ratio of the weights for control and position error. Thus

for brevity the following three plots show how the same system parameters change

as the ratio of Q2/Q1 increases. Figure 3.11 shows the changes in system parameters

when the commanded change in velocity is 0.2 meters per second, while Figure 3.12

and Figure 3.13 respectively display how the system parameters change when the

change in velocity is commanded to be 0.1 and 0.05 meters per second.

61

Figure 3.11: Performance Characteristics as Q2/Q1 Changes & Input is 0.2 m/s

Figure 3.12: Performance Characteristics as Q2/Q1 Changes & Input is 0.1 m/s

62

Figure 3.13: Performance Characteristics as Q2/Q1 Changes & Input is 0.05 m/s

In these simulations the percent overshoot of the position error is not affected

by a change in the ratio of Q2 to Q1 while the percent overshoot of the velocity

error is negatively correlated to the same ratio. Furthermore, the settling time for

the position error is positively correlated to the ratio of Q2 to Q1. The settling time

for the velocity error behaves differently however. Although the settling time for the

velocity error is positively correlated in Figure 3.11 and Figure 3.13, this parameter

is negatively correlated in Figure 3.12. Lastly, the total time the thrusters were firing

was constant regardless of the commanded velocity inputs or the ratio of the weights

Q2 and Q1. This is attributed to two reasons. First, the change in weights for this

part of the trade study has no affect on the change in the control weight therefore the

same weighting on control is applied to all the simulations therefore resulting in the

same control usage as one varies the ratio of Q2 to Q1. Secondly, the fuel time is the

same regardless of the input because when the commanded input is relatively high

for the system the controller is using the thrusters to drive the errors to zero while

the input is relatively low for satellites, the controller is expelling fuel to maintain the

errors. One might suggest expanding the region to apply the dead zone to minimize

the fuel consumed but doing so degrades the accuracy of the position and velocity

63

of SPHERES. For missions like in-space robotic assembly and other close proximity

operations between satellites with multiple maneuvers in which satellite refueling is an

option, maintaining accuracy is of utmost importance. Therefore the control usage (as

seen through the length of time the thrusters fired) is observed to insure the control

reach unnecessary levels, but otherwise ignored.

Once again, the performance parameters of interest are the percent overshoot of

the velocity error and the settling times of both the position and velocity error. When

the commanded change in velocity is lower than 0.05 meters per second the system

performance parameters are all in acceptable regions regardless of what the weights of

velocity and position errors are. Therefore for the purposes of selecting the weighting

ratio of Q2 to Q1, these cases can be ignored. Furthermore the percent overshoot

of the response of the velocity error does not exceed 11% thus the real parameters

of interest are the two settling times. When the value of the commanded change

in velocity is relatively high as in Figure 3.11, the settling times are both positively

correlated, so an extremely low ratio for the weights of Q2 to Q1 is desirable. Yet in

the middle range of operation as in Figure 3.12 the settling time for the velocity error

is now negatively correlated. This difference yields two values for the ratio of Q2 to

Q1 that would be acceptable. They are when the ratio is 0.09 and 0.37. Table 3.1

displays the system parameters of interest that each weighting ratio would produce

under the given circumstances.

Table 3.1: Comparison of System Parameters when Q2/Q1 is 0.09 and 0.37

Commanded Ratio of Percent Overshoot Settling Time of Settling Time of

Velocity Q2 to Q1 of Velocity Error Position Error Velocity Error

0.2 0.37 9.64% 37.26 sec 25.05 sec
0.2 0.09 10.75% 34.26 sec 24.40 sec
0.1 0.37 2.75% 21.23 sec 9.07 sec
0.1 0.09 3.12% 19.26 sec 10.01 sec

As shown in Table 3.1 the settling times exhibit an indirect relationship in that

lowering one raises the other and vice versa. The author chose to select the ratio of

64

Q2 to Q1 to be 0.09 for two reasons. First, while the control algorithm is designed to

control the velocity of SPHERES, the settling time of the position error is over thirty

percent larger than the settling time of the velocity error. And the position error has

undesirable values for the settling time while the velocity value has at least acceptable

values. Lastly, while the selection of either ratio value would make one of the settling

times worse, the selection of 0.09 as a value for the ratio of Q2 to Q1 has less of a

harmful affect on the settling time of the velocity error than the other ratio value has

on the settling time of the position error. With the ratio between both R1 to Q1 and

Q2 to Q1 set, the selection of any arbitrary value of Q1 would automatically set the

values of R1 and Q2 to properly weight the LQR controller to deliver optimal results.

Before moving on, the author chose to perform another test to verify an assumption

that was made at the beginning of this trade study. Earlier an assertion was made

stating only two ratios are needed to know how to set the LQR controller to generate

the best performance of the system even though three weights are required. If this

is true one would expect that changing the ratio of Q2 to R1 would not affect the

system parameters of the response in either the position and velocity errors. In this

last test the ratio of the weight of the velocity error to the weight of the control is

changed at different inputs to see how the system parameters change. This test shows

that varying the velocity error weight with respect to the control weight did not affect

the system in any significant ways. Only changes of less than a percent occur in any

of the measured system parameters. Therefore it is valid for one to assume that for

this system only knowledge of the two ratios were needed to determine the optimal

weights for the LQR controller.

Equations 3.6 and 3.7 show the final weighted matrices derived for the LQR

controller. These matrices are created by arbitrarily selecting the weight for the

position error and picking the other weights so that the optimal ratios are preserved.

Q =

1 0

0 0.018

 (3.6)

65

R =
[
0.06

]
(3.7)

3.2.3 Optimal Weighting for τ . With the state and control weight matrices

selected, the feedback gains for the position and velocity components are determined

following the process described in Section 2.4.5. Once the feedback gains are deter-

mined the switch line of the bang-bang controller is only dependent on τ . Figure 3.14

illustrates how adjusting τ changes the slope of the switch line.

Figure 3.14: Phase Plane of Translational Errors for 1-D Simulation

Figure 3.14 also displays a how the relationship between the position and veloc-

ity errors3 changes with τ . When τ is too big or too small, the slope of the switch line

becomes too shallow or too steep respectively. This in turn distorts the relationship of

the errors by skewing priority between which error should be minimized at a specific

point in the phase plane. Furthermore, changing τ also changes the time response

3Recall that the controller cannot run simultaneously with the SPHERES estimator. Thus, when
the controller is off, the velocity is temporarily ‘stuck’ while the position error continues to drift
before the controller is turned on again. This phenomena results in the horizontal lines occurring
throughout the relationship of the errors.

66

of the SPHERES model. Figure 3.15 shows the time response of the position and

velocity errors as τ is adjusted from one to four.

Figure 3.15: Response of Translational Errors for 1-D Simulation

Notice in Figure 3.15 how all the position or velocity errors begin in the same

manner but diverge one at a time as τ changes. This is because the simulation always

begins above the switch line regardless of the given values of τ , and each diverging

response occurs as phase plane trajectories pass their corresponding switch line. In

addition, note that the extreme values of τ produce undesirable time response plots

most noticeably in regards to the settling time of the response. This indicates that

some optimal value of τ exists to produce desirable response characteristics.

In order to determine a desirable value of τ , the author chose to consider the

system’s rise time and settling time as performance characteristics the desired per-

formance characteristics. This is because changing τ could produce under-damped

or over-damped responses. The settling time (2% method) is used to rate how fast

each response reaches the final value while the rise time (10% to 90%) is used to indi-

cate how quickly the desired response gets to the desired region. While the rise time

may appear to be a redundant comparison, this performance parameter is included

67

because of the controllers applications. New user inputs could be fed into the control

algorithm quicker than the controller minimizes the errors of the previous command.

Thus it is important to reduce most of the error quickly to minimize the effect of

compounding previous errors with new errors. Furthermore, the rise-time is actually

the most important consideration for this reason. In addtion, the percent overshoot

was not considered for this application because under-damped systems with relatively

quick rise-times have minimal values for percent over-shoot, so no beneficial informa-

tion is gained by including this value. Lastly, only the position error was considered

for much of the same reasons as no additional information exists within the veloc-

ity errors when the position error is already considered. Table 3.2 contains a brief

summary of the results.

Table 3.2: Comparison of System Parameters of Position Error as τ Changes

τ Settling Time [sec] Rise Time [sec] Response

1.0 25.85 5.94 under-damped
1.5 20.90 6.03 under-damped
2.0 14.52 6.92 under-damped
2.5 13.25 7.35 over-damped
3.0 19.54 10.03 over-damped

Table 3.2 indicates the best performance results when τ = 2. Values of τ in

between those listed are not included to keep the table manageable. Furthermore,

values of τ between 2.0 and 2.5 do not provide significant differences. This is because

the response becomes critically damped somewhere between 2.4 < τ < 2.5 and as

this happens it is almost an instantaneous switch. Thus τ = 2.0 is in fact the most

desirable value.

Now that all the gains for the translational controller have been determined

Figure 3.16 & Figure 3.17 display a sample response of this controller in one dimension.

Since each dimension is independent, the three dimensional control algorithm

is simply the one-dimensional controller applied to the three different axes in the

satellite’s body frame.

68

Figure 3.16: Simulation Response of 1-D Translational Errors with Optimized τ

Figure 3.17: Phase Plane of 1-D Translational Errors with Optimized τ

69

3.2.4 Quaternion Controller. The control algorithm also commands the

satellite’s orientation through the quaternion controller. This controller is developed

through a Lyapunov function to ensure global asymptotic stability4. Since the rota-

tional portion of the SPHERES plant is determined by the systems quaternions (q̄)

and Euler rates (ω̄), it is natural to include these variables in the Lyapunov function

(V) to control the plant. The real task however, is inserting these variables in a way

to make V positive definite and V̇ negative definite. A simple way to ensure the V is

positive definite is to make V a sum of quadratic functions.

The output of a quadratic function is always positive for any real input. In

regards to the Lyapunov function, quadratic functions are useful because there are no

restrictions placed on the function’s inputs so long as the variables for the inputs are

real numbers. When controlling quaternions, the quaternions and the angular rates

are always real numbers, so in fact no restrictions have been placed at this point.

With this in mind consider Equation 3.8.

V = ω̄TMOIω̄ + q̃T q̃ + (q4 − 1)2 (3.8)

Equation 3.8 is the Lyapunov function used to develop the quaternion controller.

Note that while all terms are quadratic functions, only the last term is easily recogniz-

able as one. The second term is actually the dot product of q̃ with itself which results

in the sum of the square of each of the first three quaternion terms. The act of taking

a vector dot product with itself can be thought of as squaring a vector much like the

input is squared for simple quadratic functions. This of course positive definite. For

the first term, recall that the mass moment of inertia is positive definite because the

eigenvalues of MOI must be positive real numbers. In addition, ω̄T ω̄ is also positive

definite for the same reason that the second term is. Recall from Section 2.4.3.1 that

4While Lyapunov functions are described in detail in Section 2.4.3, keep in mind that desirable
Lyapunov functions are positive definite while their time derivative is negative definite [40].

70

the product of two positive definite matrices is still positive definite. Finally, since

each term in Equation 3.8 is positive definite the sum, is also positive definite.

Now that the Lyapunov function is positive definite the next step is to ensure

the time derivative of the Lyapunov function, V̇ , is negative definite. This is done by

inserting the appropriate rate equations into V̇ , simplifying terms, and then choosing

an adequate control law to ensure V̇ is negative definite.

First, one needs to take the time derivative of the chosen Lyapunov function.

Although time is not explicitly listed in Equation 3.8, the quaternions and angular

rates are functions of time. Thus, the derivative of this Lyapunov function can be

seen in Equation 3.9.

V̇ = ω̄TMOI ˙̄ω + q̃T ˙̃q + 2(q4 − 1)q̇4 (3.9)

Once the rates for the angular rates (˙̄ω) and quaternions (˙̃q & q̇4) have been in-

cluded, substituting those variables with their corresponding equations (Equations 2.50, 2.46,

and 2.47 respectively) results in Equation 3.10.

V̇ = ω̄TMOI(MOI−1(ū−ωxMOIω̄))+2q̃T (
1

2
q4ω̄−ωxq̃)+2(q4−1)(−1

2
ω̄T q̃) (3.10)

The next step is to simplify Equation 3.10, so that the V̇ becomes a little more

understandable. This is done by first canceling the identity formed by the product

of the mass moment of inertia and its inverse in the first term. Next, the remaining

terms are expanded out to show how additional terms are canceled out. This can be

seen in Equation 3.11.

V̇ = ω̄T (u− ωxMOIω̄) + q4q̃
T ω̄ − 2q̃Tωxq̃ + ω̄T q̃ − q4ω̄T q̃ (3.11)

71

The terms q̃T ω̄ and ω̄T q̃ are both the dot product of ω̄ and q̃, and equal the

same scalar value. Thus, the second and the fifth terms result in equal but opposite

values and hence cancel each other out. Lastly, the product of the third term is zero.

Only the first and fourth term of Equation 3.11 remain. The sum of these terms yields

the final result as seen in Equation 3.12.

V̇ = ω̄T [ū− ωxMOIω̄ + q̃] (3.12)

In order for the system to be globally asymptotically stable, Equation 3.12 must

be negative definite over the entire domain so that V̇ is valid. While the equation

is not obviously negative definite at the moment, it can be manipulated as desired

because the control law ū can still be selected. Therefore any control law that makes

the equation negative definite should in theory allow for the SPHERES orientation to

be globally asymptotically stable around its commanded orientation when the initial

angular rates were zero. Since the control only affects the angular rates, the author

chose to include the term Kd to act as a gain that can be adjusted to affect the

systems rate. This variable is meant to be a positive scalar and is similar to the

derivative gain commonly used in linear PD controllers. Furthermore, the author

chose to use the control law shown in Equation 3.13 because these terms canceled out

the undesirable system characteristics while inserted the gain, Kd, in a manner that

affected the angular rates and made the system negative definite.

ū = ωxMOIω̄ − q̃ −Kdω̄ (3.13)

When the control law (Equation 3.13) is inserted into Equation 3.12 and sim-

plified, the end result can be seen in Equation 3.14.

V̇ = −ω̄TKdω̄ (3.14)

72

Once again, the control law (Equation 3.13) will control the system’s quaternions

by driving the first of the values of the quaternion error to zero so long as the value for

Kd is positive. But what values, if any, give more desirable response characteristics

for the quaternion controller? Next the values of Kd should be optimized to yield the

most desirable performance characteristics for the quaternion controller.

3.2.5 Optimal Weighting for Quaternion Controller. Now that a control

law has be created for the quaternion controller, the variable Kd can be tuned to

yield various results. For this application the author chose to consider the response

characteristics of the first three values of the quaternion error since these values are

suppose to be driven to zero. Specifically, the peak value, settling time, and control

usage were analyzed. This section details how the trade study was performed to select

the value for Kd that balances these three parameters against each other and then

highlights what the author considers to be the best value.

This study began by considering the affects of rotating about one axis at a

time. In other words, SPHERES started in line with the inertial frame and was then

commanded to roll, about one of its body frame axes. This was done so that rolling

about each axis could be looked at individually before analyzing more complicated

maneuvers. Commanding SPHERES to roll about its X-axis primarily affects the 3rd

quaternion, while commanding SPHERES to pitch up or down primarily affects the

2nd quaternion, and lastly, commanding SPHERES to yaw or rotate about its Z-axis

primarily affects the 1st quaternion. In addition all require some input from the 4th

quaternion as this quaternion must change to satisfy the constraint that the root sum

square of the quaternion vector remains at a constant value of one.

The first test looked at the response of rolling SPHERES 10◦ about its x-axis.

Figure 3.18 shows how the error of the 3rd quaternion changes to meet the requirement.

Next, the controller was allowed to run continuously for this example to verify that

the control law developed from the Lyapunov equation in Section 3.2.4 was in fact

globally asymptotically stable for positive values of Kd.

73

Figure 3.18: SPHERES Response of 3rd Quaternion Error when Commanded to
Roll 10◦ with Full Control

As seen in Figure 3.18, positive values for Kd do in fact provide stable solutions

when the controller is permitted to operate the entire time. Furthermore, one can

observe a trend in the affect of tuning Kd. When higher values are selected for Kd

the response in the quaternion error is more damped. Thus one can think of tuning

Kd as changing the damping ratio. But this behavior occurs when the controller is

not required to operate in limited time intervals. Figure 3.19 displays what happens

when the controller is limited to operate in 0.4 second intervals per second as required

to allow for the estimator to run without interference (described in Section 3.2.6.4).

Once the control is limited on time, positive values of Kd no longer guarantee

asymptotically stable solutions. Notice how when Kd = 0.1, the system is marginally

stable. This is because the controller does not have enough damping to operate only

40% of the time and still control the satellite. Therefore the control law is not truly

globally asymptotically stable, however for ranges of 0.2 and higher it is still stable.

In addition, a larger region of values for Kd display under-damped characteristics with

the control limited to 40%. Furthermore when Kd ≥ 0.5 the response is over-damped

74

Figure 3.19: SPHERES Response of 3rd Quaternion Error when Commanded to
Roll 10◦ with Limited Control

and the rise time is slower than the rise time of the other over-damped responses that

occur when Kd ≤ 0.5. This limits the range of desirable gains to be between 0.2 and

0.5.

Although the desired operating range of Kd has been limited the responses of the

quaternion error vary from under-damped responses to over-damped responses. This

makes it somewhat difficult to compare values of Kd as one typically characterizes

the response characteristics for under-damped systems differently than one would

characterize the response of an over-damped or first-order system. Engineers typically

characterize under-damped systems by the percent overshoot and settling time of the

response while over-damped responses do not overshoot the desired value and are

typically characterized by the rise time (10% - 90%) of the response [37]. Oftentimes

the specific application will favor either under-damped or over-damped responses as

each have their own advantages and disadvantages. In this application, the two largest

objectives for the controller are to complete the maneuver as fast as possible while

using the least amount of fuel. As Figure 3.19 shows that values of Kd between 0.3

75

and 0.4 produce the fastest response while values outside this range take more time

to reach a steady-state response. In addition this region also requires less control

to perfrom the maneuvers. This can be seen indirectly through the sum of all the

external torques applied on SPHERES by the thrusters.

Figure 3.20: SPHERES Response when Commanded to Roll 10◦

With this knowledge it becomes apparent that regardless of whether it is an

over-damped or an under-damped system, the value for Kd should lie between 0.3

and 0.4. Thus the quaternion controller was run with various values of Kd to observe

the response of the quaternion error. Figure 3.20 describes how the quaternion error

is driven to zero when various values of Kd within this desired range. At first glance

one can see that within this range the value of Kd increases, the amount of torque

required decreases, and the response transitions from an under-damped system to an

over-damped system. Upon closer inspection the response of the 3rd quaternion error

when Kd = 0.35 appears to be critically-damped or almost so. This occurs when the

damping ratio, ζ of the system response equals one and serves as the transition be-

tween under-damped systems and over-damped systems. Controllers are not typically

designed to produce critically-damped responses as it is difficult to make a system

76

that has ζ = 1 exactly. In the case of this controller however, while the over-damped

responses required a little less control, the almost critically-damped system reaches its

steady state value much faster than either under-damped or over-damped responses.

Therefore, the author chose to pick Kd to 0.35 since this response most closely meets

the controller’s requirements. But this response is only for when the satellite is com-

manded to roll about its x-axis. What about when the satellite needs pitch or yaw

about the other axes?

Figure 3.21: SPHERES Response when Commanded to Pitch Up 10◦

Figures 3.21 and 3.22 display the response of the appropriate quaternion error

when SPHERES is commanded to roll about its other two axes. Both of these figures

show that when the desired near critically-damped response is achieved when Kd ≈

0.35.

3.2.6 Controller Nonlinearities. In regards to Figure 3.1, the two controllers

produce control laws that do not fully account for all the intricacies of the SPHERES

system. Specifically, there are a few dynamics inherent to SPHERES that are not

accounted for with the current control law. To remedy this, the two control laws are

77

Figure 3.22: SPHERES Response when Commanded to Yaw Right 10◦

then modified by the four nonlinearities before the two laws are merged to create the

thrust profile described in Section 3.2.7. The four nonlinearities implemented into

the control algorithm include a dead-zone, a saturation, a rate limiter, and a periodic

signal suppressor to correct processing time allowance.

3.2.6.1 Dead-Zone. The implementation of a dead-zone prevents the

system from chattering and wasting fuel. The term chatter describes the phenom-

ena that results from unnecessary control usage. This is particularly noticeable when

discrete bang-bang controllers attempt to drive errors to exactly zero. Recall that

bang-bang controllers are either completely on or completely off. Thus, while the

signal error becomes smaller and smaller, the controller is still only capable of com-

manding the same magnitude of thrust to drive the small error to zero. This results

in an overshoot, that the controller will then correct with yet again, a relatively large

thrust in the opposite direction. Figure 3.23 demonstrates this phenomena pictorially.

Figure 3.23 shows a one dimensional case for the relationship between the po-

sition and velocity error of a sample spacecraft. Recall that the controller will switch

78

Figure 3.23: Example of Chattering with a Bang-Bang Controller [3]

correction priority, based on the slope of the switch line, between the errors. Eventu-

ally, further improvement in the errors results in a need to correct both errors almost

at the same time. This can be seen in the second quadrant of Figure 3.23 as the errors

almost ‘ride’ the switch line to the origin. When this occurs the process appears to

‘chatter’ as the errors approach the origin of the phase plane because the thrusters fire

at a set value that cannot be changed during flight. Thus each thrust causes the error

to overshoot a little which results in another thrust to oppose the thrust that was just

created. Although the error can be minimized by reducing the amount of time the

thrusters fire, the control, or fuel, is consumed inefficiently when the system ‘chat-

ters’ because some control is required to counter the control previously implemented.

Thus, a dead-zone is implemented to minimize the effects of chatter by restricting

small amounts of control usage. This is implemented by preventing the controller

from outputting a signal unless that signal exceeds a specific magnitude [4].

Figure 3.24 graphically displays the describing function of the dead-zone. When

the control signal is run through a dead-zone, the magnitude of the control signal is

reduced to zero when the signal’s magnitude is less than the dead-zone limit, or δ.

However, if the magnitude of the control signal is greater than δ then the magnitude

is not attenuated. This allows a designer to limit chatter because the controller is

unable to provide those excessive counter thrusts.

79

Figure 3.24: Example of Dead-Zone Nonlinearity [4]

Although the prevention of chattering saves fuel use, the implementation of a

dead-zone can degrade system performance if the value of the dead-zone it too large.

The dead-zone value is the range of the signal that produces no control (2δ). If

this range is too high, then the controller is unable to meet the minimum error re-

quirements imposed by the user. Thus, the dead-zone needs to be large enough to

prevent unnecessary fuel consumption, but small enough to prevent an unacceptable

loss of controller precision. The application of the SPHERES program on the ISS

dictate that controller precision is of greater importance than fuel conservation as the

SPHERES satellites are typically required to execute multiple maneuvers involving

centimeter-level accuracy. With this in mind, the dead-zone has be limited to a range

of ±0.002. This allows the translational controller to command position and velocity

values with an accuracy of 0.2 centimeters or centimeters per second respectively. In

addition, this dead-zone allows the quaternion controller to drive the quaternion error

be within ±0.002 of the desired quaternion error. Lastly, while this value effectively

balances the two competing desires one can change the dead-zone width by changing

the variables labeled ‘High’ and ‘Low’ in the master code provided to run the sim-

ulation. Although the dead-zone is set to ±0.002 for better accuracy, the analysis

performed in Section 4.4 describes how to select the dead-zone to reflect the users

needs.

80

3.2.6.2 Saturation. While the dead-zone conserves fuel by eliminating

small control values, the saturation confines the non-zero control values to specific

values. This is a practical limitation imposed by the system since the SPHERES

thrusters can only maintain a specific thrust value as opposed to a variable value.

Therefore, the two control laws become three by one vectors containing either zeros

and positive or negative ones. A positive value would correlate to a positive translation

or rotation while a negative value would represent a negative translation or rotation.

Since the signal will eventually be converted into a thrust value before it is passed

into the plant, there is no advantage to be gained by changing the values that the

control signals are set to. Therefore, the simulation sets non-zero control values to

±1.

3.2.6.3 Rate Limiter. Next, a rate limiter is applied to ensure the

satellite does not maneuver too quickly. Theoretically, a satellite could continue

to speed up by constantly accelerating until the fuel was spent. This means the

satellite could reach translational and rotational speeds that would make the satellite

dangerous to operate inside the ISS. To safeguard against this a rate limiter is imposed

to ensure the satellite stays within acceptable translational and rotational rates. This

is implemented using a number of logical (‘if/else’) commands shown in Figures B.13

and B.14 of Appendix B.2.2. This is accomplished by checking the current rates of

the satellite. If the satellite rates are within limits then the control signal passes

through as normal. If the rate of the satellite exceeds the specified rate limit then

only control signals that correct the problem are allowed while control signals that

would exasperate the current rates are set to zero. The translational and rotation rate

limits are set by the user. Since no requirements are explicitly stated for suggested

or mandatory rate limits, the translational rate limit is set to 0.1 meters per second

and the rotational rate limit is set to 6
◦

sec
.

3.2.6.4 Periodic Signal Suppressor. Lastly, a periodic signal suppres-

sor is installed to cut off the control signal after a specific amount of time. This control

81

limitation is in place because the accuracy of the SPHERES estimator significantly

degrades if the thrusters are firing. This is because the on board metrology system

uses ultrasonic noise to determine the satellite’s location, and the noise and vibrations

produced by the thrusters are strong enough to interfere with this process. In order

to prevent this, the controller is cut off a certain percentage of every second to give

the estimator uninterrupted time to work. Previous work on SPHERES has shown

that the estimator produces adequate results when allowed to run for 0.6 seconds at

a time. Therefore, this algorithm follows the same rule of thumb and allows the con-

troller to run for no more than 0.4 seconds per second. The periodic signal suppressor

is created in the simulation software by multiplying the control signal with a periodic

pulse. The periodic pulse has an amplitude of one and a width of 0.4 seconds.

3.2.7 Controller Signal Logic. Once the controller signals have been passed

through the nonlinearities they must be merged together and formatted to create a

thrust profile to trigger the thrusters to fire in a manner to produce the force and

torque. In a broad sense this is achieved in two parts. First, the control torque

signal is used to determine a thrust profile that rotates SPHERES as desired, while

the control force signal is simultaneously used to determine a thrust profile that

translates SPHERES as the control law dictates. The sum of these two thrust profiles

is found and run through a saturation to ensure that the merged thrust profile contains

nothing but zeros and ones for the plant to interpret as in Section 2.5.3. The process

for determining how the control signals rotate and move SPHERES is similar to

process the plant uses to interpret the signal but simply reversed. A number of

‘if/else’ statements are used to determine if the signals contain positive, negative, or

zero value on\about each body axis. This determines whether a positive, negative,

or no translation\rotation is required to meet the control laws requirements. Finally,

the use of Table 2.1 allows one to build an appropriate thrust vector for each control

law as this table relates how rotations and translations and the SPHERES thrusters

interact.

82

3.3 Interface & Simulation

To finish up discussion on the development of the controller, it is beneficial to

consider how to interact with this controller to command SPHERES to perform as

desired. As expected, any problem with relative motion requires at least two bodies

or points to properly describe how one object moves relative to another. Thus, as

users specify commands or rules for each of the bodies to obey, they may wish to

select desired values for the bodies in different coordinate frames. This allows for

simplicity in the design of path planning. Furthermore, path planners might not

want to specify every point for the SPHERES to be, rather one might simply specify

SPHERES to be at various locations at various points in time. The inputs then must

be conditioned and reformatted so that the controller knows what the user is asking

for and the user does not have to waste time over defining a path for SPHERES to

track. Conditioning the users inputs is split into three sections. First, Section 3.3.1

covers what users can input to command SPHERES. Section 3.3.3 discusses how to

interpret user data that is in the global frame. This is referred to as the internal

conditioning as this is performed within the simulation for each SPHERES used.

Section 3.3.2 contains information needed to convert user commands into arrays the

simulation can use that are in the global frame. This is considered the external

conditioning since this is performed outside of the SIMULINK R© simulation. These

calculations are performed before the simulation as they are usually different for each

body considered. Lastly, Section 3.3.4 discusses how to use the information attained

through each of the simulations to analyze the relative motion between the satellites.

For the simulations described in this thesis, the bodies considered were individual

SPHERES satellites, and only two were considered to demonstrate the effectiveness

of the speed and path control algorithm. However, that does not mean one is unable

to adapt the simulation to consider bodies other than SPHERES or more than two

objects. This can be modified by conditioning the external inputs as discussed in

Section 3.3.2.

83

3.3.1 User Commands. The controller requires parameterized equations for

the desired velocity, and desired quaternions to run. While some path planners may

wish to program paths using parametrized velocities and quaternions, various paths

are difficult to parameterize and quaternions are typically challenging to visualize.

Nonetheless, this method offers the most freedom for users to design desired paths

because they directly interface with the controller. This in turn, typically offers the

user the best understanding and command of a system. In any case, the author imple-

mented an interface that asks the user for more intuitive information and interprets

the results. The master script which runs the simulation to demonstrate the designed

control algorithm prompts the user for points of interest. These points of interest are

simply points in time that the user wants SPHERES to be doing something specifi-

cally. The next sections will discuss how to interpret these points of interest, but for

the time being, think of each point of interest as points where SPHERES is being

asked to do something new such as speeding up or changing direction. This method

allows the user to specify where and what SPHERES should be doing with a relatively

small amount of data while the master script interpolates the data to generate the

full trajectory. This method for interpolating commands has not been optimized by

any means, so other trajectories could exist that allow SPHERES to accomplish the

same tasks in less amount of time or fuel. However, since the focus of this thesis is to

develop the speed and path control algorithm as opposed to optimal trajectories for

the SPHERES program, the author chose to include a simple user interface for path

building. Thus, this interface allows one to see how the control algorithm performs.

If one wanted to develop optimal paths for SPHERES with speed and path control

a new user interface based on user objectives and not specific points in time would

likely need to be implemented. In the meantime however, the user needs to record

the desired points in time. Table 3.3 contains a brief overview of just how this is

achieved and what inputs are required for each run of the simulation. interpolating

commands has not been optimized by any means, so other trajectories could exist

that allow SPHERES to accomplish the same tasks in less amount of time or fuel.

84

However, since the focus of this thesis is to develop the speed and path control algo-

rithm as opposed to optimal trajectories for the SPHERES program, the author chose

to include a simple user interface for path building. Thus, this interface allows one to

see how the control algorithm performs. If one wanted to develop optimal paths for

SPHERES with speed and path control a new user interface based on user objectives

and not specific points in time would likely need to be implemented. In the meantime

however, the user needs to record the desired points in time. Table 3.3 contains a

brief overview of just how this is achieved and what inputs are required for each run

of the simulation.

Table 3.3: User Inputs for SPHERES Simulation

Input Name Definition & Purpose Units Dimension

Step Size How often the simulation updates seconds (1x1)
Duration How long the simulation runs seconds (1x1)

Time Array of times of interest seconds (nx1)
Position Array of positions of interest meters (nx3)

Pointing Vector Body frame vector that faces target meters (3x1)
Initial Euler Angle Initial condition for simulation degrees (3x1)

Initial Angular Rate Initial condition for simulation degrees
second

(3x1)
Initial Velocity Initial condition for simulation meters

second
(3x1)

The Step Size and Duration inputs serve to specify the rate at which the sim-

ulation updates as well as the length of the simulation. The underlying solver for

this simulation is ‘ode3.m’. This fixed-step solver uses the Bogacki-Shampine method

to sample the data at each and every time step. As Step Size decreases in value

the simulation outputs become more accurate as the simulation begins to mimic the

actual continuous system. A Step Size value of 0.0005 was chosen for the simulations

run in Chapter IV. The Time and Position variables are all length ‘n’. This vari-

able corresponds to the number of points of interest the user decides to include for

the simulation. For example, if the user had five points of interest for a particular

SPHERES, the Time input would contain the five times at which each of those points

of interest should occur. In addition, the Position input would have five rows con-

taining a row vector of the desired position of SPHERES for each point of interest.

85

Next, the pointing vector allows the user to specify what point of SPHERES should

face the target. This could be used to have a camera point to a target or to indicate

the side of SPHERES that should dock with a target. The last three variables in

Table 3.3 specify the initial conditions for the SPHERES satellite at the start of the

simulation. The initial Euler angle is used so the user can provide an initial orienta-

tion for the satellite. The Euler angles are used to perform a 3-2-1 rotation sequence

commonly called a roll-pitch-yaw sequence. This method was chosen to allow users

an intuitive avenue to specify spacecraft orientation. In addition the initial angular

rate and velocity values set the constants for the integrators used within the simu-

lation. Although not directly specified, collecting data from the user in this manner

also provides the initial position for the first point of interest.

Finally, it is important to note that the last six variables in Table 3.3 need to be

input for each SPHERES satellite that will be used for each simulation. Thus when

considering the relative motion between an inspector and a target, two SPHERES

would need to be included and two sets of variables would be needed since these

satellites will likely not have the same requirements for the entire simulation. One

can see how this interface is implemented within the simulation by referencing the

m-file labeled ‘SPHERES simulation.m’. This file is located in Appendix A.

3.3.2 External Conditioning. One should note that while the satellites of

SPHERES program each have Time and Position inputs for each of their respective

points of interest, these values are recorded in the global frame. Although all satellite

points of interest are recorded in the global frame, the target satellite needs its position

from the origin of the global frame and the simulation asks for the inspector satellite

points to be the desired range from the target. This is because users typically are

not interested where the inspector satellite(s) is with respect to the global frame so

much as they are concerned with where the inspector is with respect to the target.

When using multiple satellites, Section 3.3.2.1 details how to interpret data for the

target satellite (or satellites if one was to change the inspector’s objective within a

86

simulation) are discussed in Section 3.3.2.1 while details about interpolating data for

the inspector satellite(s) is discussed in Section 3.3.2.2. Regardless of what category

the SPHERES satellite falls into, the user input data will need to be interpolated to

create a full set of data points for the simulation because the user’s points of interest

are not expected to exist at every time step in the simulation. Within the MATLAB R©

master script, this routine is performed in the sub-function labeled ‘datainterp.m’ and

can be found in Appendix A.2. In a broad sense this file receives the users desired

values for each point of interest and develops time and velocity arrays that contain

values for every time step in the simulation. The ‘datainterp’ routine accomplishes

this task by receiving the Step Size, Duration, Time, Position, and initial Euler angle

variables mentioned in Table 3.3. The simulation time array is created first with the

Step Size and Duration variables. Next, the time of each of the points of interest are

matched with the same time values in the simulation time array. This process makes

it possible to determine where the position and Euler angles for the points of interest

fall into the simulation Time array. With this knowledge the position vector can be

determined for all values of time in the simulation time array. This is done by linearly

interpolating for the missing points of these variables. A linear interpolation is used to

fill in the data between the points of interest because user is not explicitly interested

in what happens between the points of interest. If the user truly was interested, then

they would have specified more points. It is possible that other forms of interpolation

could be used to optimize the path between the users points of interest but that

study is beyond the focus of this thesis. Returning to interpolating the data, recall

that a line can be defined in slope intercept form as seen in Equation 3.15 where the

variable,‘x̄’, is specified by ‘m̄’, the slope, the time ‘t’, and the intercept ‘b̄’.

x̄ = m̄t+ b̄ (3.15)

Each section between the points of interest has a distinct value for m̄ and b̄. To

calculate the slope, the time and vector component of the current point of interest

87

(denoted by the subscript ‘i’) and the next point of interest are used as shown in

Equation 3.16.

m =
xi+1 − xi
ti+1 − ti

(3.16)

Once the slope has been calculated for each component in the position vector,

the intercept term is calculated using the current time, vector component, and slope

to solve Equation 3.15. Once the slope and intercept terms have been found for each

of the gaps between the points of interest, Equation 3.15 is used to solve for each

of the vector components for the position array. Next,the control algorithm needs

the velocity array. Fortunately, since the position vector is already parameterized

the velocity array can be found for each time step by taking the derivative of the

position with respect to time. Recalling Equation 3.15, this derivative is simply the

slope. Thus the velocity array is simply m̄. This holds true as long as the initial

slope intercepts are recorded as the initial conditions for the integrators within the

simulation as discussed in Section 3.3.3.

Subsequently, the ‘datainterp.m’ routine converts the initial Euler angle into

an initial set of quaternions. This is achieved by using the initial Euler angles to

perform a 3-2-1 rotation using Equation 2.14. The rotation matrix is then used to

determine the first eigenaxis of rotation along with the principal Euler angle using

Equations 2.21, 2.22, and 2.23. At this point the initial quaternions are derived

from the eigenaxis of rotation and the principle Euler angle using Equation 2.26 and

Equation 2.27.

Although the ‘datainterp.m’ subroutine prepares the user specified information

for the simulation, more signal condition needs to be performed before the simulation

can be run. This is because the target and inspector spacecraft have slightly different

inputs that need to be accounted for.

88

3.3.2.1 Target. The velocity information for the target is input with

respect to the global frame. Thus, the velocity array can be directly imported into the

SIMULINK R© simulation. Furthermore, the plant has four initial condition vectors:

position, velocity, quaternion, and angular rates. The initial conditions for the angular

rates simply need to be converted from degrees per second to radians per second, and

the initial conditions for the position and velocity are specified by the user. Lastly the

initial conditions for the quaternions are supplied from the ‘datainterp.m’ subroutine.

3.3.2.2 Inspector. Formatting all the variables for the inspector satel-

lite(s) is more involved as the user supplies this information in relative to the target.

Thus, the information must first be converted to produce the inspector’s position

vector in the global frame. Once all the information is in the global frame, formatting

the deputy’s user-specified information is identical to that of the target’s information

discussed in Section 3.3.2.1. Therefore this section only focuses how to create the

inspector’s desired position vector.

Since the user specifies the desired range the inspector should be from the target,

the sum of the target’s position and the range should result in the desired position

vector of the inspector. This is a valid approach as long as the correct position vector

of the target is specified. Figure 3.25 illustrates this concept in two dimensions.

Figure 3.25 displays the relationship between two SPHERES satellites at an

arbitrary point in time during a simulation involving a target (T) and an inspector (In)

satellite. In addition, it should be noted that all vectors are represented in the global

frame. The user supplies the desired location of the target, r̃t, and the desired range

the inspector should be from the target SPHERES, ρ̃. Additionally, the target’s true

location, r̄t is also shown. Before the control algorithm is applied to the inspector, the

user inputs need to be adjusted to reflect the true desires of the user. This is because

there exists a potential that the target is not actually where it is supposed to be at

any point in time. This error is denoted as ēt in Figure 3.25. Regardless of how small

this error is, the error will affect the user’s input because ρ̃ is dependent upon where

89

Figure 3.25: 2-D Illustration of Correction of Desired Position

90

the target actually is instead of where the target satellite should be. Thus, the desired

position vector of the inspector, r̃in, is the summation of the actual location of the

target and the desired range the inspector should be from the target. At this point,

it is worth considering that this simulation requires the target to be simulated before

the inspector is simulated to get r̃in. This is because the simulation does not consider

the SPHERES estimator during simulation. In reality, the SPHERES estimator is

capable of determining the position and velocity of the target as well as the inspector.

Thus the inspector does not require full knowledge of the target for every point in

time like the simulated SPHERES needs because the estimator provides the required

information real time. In either case, one should verify that the true position of

the target is used instead of the desired location to ensure that inspector SPHERES

follows the correct path. Once this is done, the initial conditions for the inspector

must be called. The initial conditions for the position, velocity, quaternions and the

angular rates are found in the same manner as those modified for the target.

3.3.3 Internal Conditioning. As the simulation is running the user specified

values are called for each time step. This is performed in the user commands block.

The user commands block in Figure 3.1 reads the desired target position and velocity

from look-up tables that were filled with the quaternion array and velocity arrays

developed in Sections 3.3.2.1 & 3.3.2.2. Next, the velocity information is integrated

to provide a desired position as well as a desired velocity. The integrator also con-

tains the value of the initial intercept for the position vector to ensure the desired

values line up as the user initially specified. Although users could have inserted both

desired positions and velocities into the simulation without using the integrator, the

author chose just to import the desired velocity for a few reasons. First, the values

for position and velocity are defined with respect to time, thus only either position

or velocity is really required, as the other can be found through differentiation or

integration respectively. Secondly, the velocity was selected to be imported over the

position because numerically integrating is less prone to errors than numerically dif-

91

ferentiating. Lastly, while the linear interpolation performed in Section 3.3.2 does use

an easy derivative, future path planning interfaces may not ask for inputs in position

at all. Thus this control algorithm was designed with the future path planning imple-

mentations in mind, and only asks for the desired velocity information so that easily

incorporated with other path planning techniques relatively quickly. In any case, the

user commands block in Figure 3.1 outputs the desired velocity and position of the

target in the global frame. The determine errors block further conditions the user’s

inputs by rotating the finding the difference in the translational states and determin-

ing what quaternions are needed to point to the target. Section 3.1 discusses how

this was performed, and completes the process for the design of this speed and path

control algorithm.

3.3.4 Post-Processing of Relative Information. Once both target and in-

spector simulations have been run, the results are processed one last time in order

to extract the information on the relative motion of the satellites. Recall that the

control algorithm minimizes the error in the relative motion of the satellites, yet the

SIMULINK R© component of the simulation generates the position and velocity vectors

of SPHERES in the global frame. To find the relative motion of the satellites these

vectors must first be manipulated to generate the desired information. In addition, the

user information needs to be manipulated correctly before the desired values can be

loaded into the simulation. Recall that Figure 3.25 provides a brief two-dimensional

depiction of vectors the user supplies and provides a foundation to understand how to

interpret the desired results. In addition, this figure only shows the position vectors

and does not include the satellites’ velocity vectors so that the plot can be easily

understood. The control algorithm generates r̄t, or the actual location of the target

satellite when the algorithm is applied to the target. Yet in order to compare a user’s

desires with the actual results of the simulation ρ̄, or the actual distance that the

inspector needs to be from the target must be calculated. This is achieved by find-

ing the difference between r̄in and r̄t. Once ρ̄ has been identified for each point in

92

the simulation, the actual relative motion of the inspector can be compared with the

desired relative motion specified by the user.

This concludes the discussion of the methodology used to create both the control

algorithm and the simulation. The control algorithm incorporates two controllers.

The translational controller maintains the position and velocity of each satellite in

the global frame using a bang-bang controller with optimal weights provided by an

LQR. Additionally, the quaternion controller maintains the satellite’s orientation by

ensuring the derived Lyapunov function is asymptotically stable. The various gains

used throughout this control algorithm have also been optimized to minimize the

transient response of the system. Specifically, the percent overshoot and the settling

time of the system was minimized. This method allows for each error to be reduced as

quickly as possible so that error does not grow over time with each new desired input.

The simulation was developed to compare the user inputs with the satellite state

vector supplied by the plant. This comparison results in the translational errors and

the quaternion error. The translational error is rotated from the global frame into the

satellite body frame before being inserted into the control algorithm. The quaternion

error is found using the eigenaxis and principal Euler angle method of rotation to

compare the difference between where the satellite is pointing and where it should be

pointing. These errors are applied to the control algorithm with generates two control

laws, one for each type of error. The control laws are modified by four nonlinearities

to meet constraints fundamental to the SPHERES program. Specifically, a dead-

zone is applied to improve fuel consumption, a saturation is included to ensure the

thrusters fire at a specific value when they do fire, a rate limiter is enforced to ensure

the satellites operate at safe speeds inside the space station, and a periodic signal

suppressor is activated to cut the control signals off after 0.4 seconds per second of

operation. These control laws are then used to generate a thrust profile to update

the satellite state vector using the system dynamics found in the plant. Now that the

methodology for this research has been discussed, the control algorithm is simulated

in Chapter IV to demonstrate the controller capabilities.

93

IV. Results

Following the methodology described in the previous chapter, the results have two

primary objectives. The first task is to demonstrate that the speed and path con-

troller works through simulation, and the second task is to provide an analysis of how

the dead-zone implemented on the control signals can be adjusted to improve either

accuracy or fuel efficiency. Section 4.1 discusses how the speed and path controller is

to be verified while Section 4.2 & 4.3 validate that the model successfully performs

functions required for speed and path control through simulation. Section 4.4 ana-

lyzes the relationship between the dead-zone nonlinearity and system performance.

Lastly, Section 4.5 provides a summary of the results of this research and provides a

brief application for how these results can be applied in future research.

4.1 Model Verification

As each component of the simulation is created, small tests are run to ensure

each component performs as desired. This allows the designer to verify that each part

of the simulation is correct. In this way, each subsystem is tested to ensure it generates

appropriate outputs for given inputs. To elaborate, consider the verification of the

subsystem used to determine the Rbi from a set of quaternions1. This subsystem

converts the quaternions from the satellite state vector and outputs the rotation

matrix associated with those quaternions, and is based on Equation 2.29. The general

procedure to verify the model consists of inputting quaternions with known rotation

matrices and checking to ensure the generated rotation matrices matches the expected

value. First, the quaternion vector shown in Equation 4.1 is applied.

q̄ =

0

0

0

1

 (4.1)

1This subsystem is shown in Figure B.4 of Appendix B.

94

This quaternion vector results when no rotation occurs, or when the rotation

matrix is equal to the identity matrix. After the vector is applied through simulation,

the subsystem generates the identity matrix. This indicates that the functions runs

and is mostly correct but this test is not able to indicate whether the rotation matrix

takes information from the inertial frame and converts the information into the body

frame or if the rotation matrix does the reverse since Rbi = RT
bi. Thus, another test is

needed to resolve the uncertainty. The second test involves a set of quaternions that

result from rotating the body frame 30◦ about the third axis. The rotation matrix

generated from this test is then multiplied with a unit vector along the first axis of the

inertial frame. The rotation matrix should then convert this vector to be represented

in the body frame coordinates if indeed this matrix is Rbi which is found prior to

the test. After running this test the rotation matrix is found to successfully rotate

an inertial vector into body frame coordinates proving that this matrix is indeed

Rbi. Similar tests are performed to each other subsystem to ensure each component

performs as expected. Once each subsystem is integrated into the entire SIMULINK R©

simulation, one must verify that correct coordinate frames are being used throughout

the simulation. Figure 4.1 provides a quick reference to understand which coordinate

frame is being used when and where.

Figure 4.1: Coordinate Frame Flow Diagram

95

As Figure 4.1 suggests, the user inputs data in the global frame, and the control

algorithm is applied in the body frame. The ‘Determine Error’ block receives global

frame information and provides body frame information for the control algorithm.

In addition, the ‘SPHERES Plant’ block accepts a body frame thrust profile and

converts the corresponding forces and torques into the global frame before the states

are updated. Keeping track of which coordinate frame is used and how it is applied

makes it possible for the simulation to be verified as a whole.

Once the subsystems are brought together to create the entire simulation, one

should verify the entire system. The simplest method for verification involves applying

a series of tests of increasing complexity. The simplest test include running the sim-

ulation while trying to keep the satellite stationary. Next, one introduces a rotation,

then a translation, and then a translation with a rotation. An exhaustive description

of these tests are not included within this thesis because the author believes their in-

clusion would detract from the bigger picture of determining if the control algorithm

is successful. Yet, one should not devalue to usefulness and necessity in testing each

subsystem just because this step is excluded. In either case, once the control system

is shown to work, the algorithm must be validated to ensure the controller is capable

of providing the user with the desired results. This is achieved through the use of

an example test involving two SPHERES. One acts as a target and the other acts

as an inspector. Section 4.2 explains the purpose and goal of this simulation, and

Section 4.3 provides the results of this simulation.

4.2 Simulation Description

For the simulation described in this section, two SPHERES are used. The first

SPHERES acts as a target, follows a straight path, and does not change its orientation.

The second SPHERES acts as an inspector and is commanded to have a particular

body frame vector face the target at all times. This body frame vector, or pointing

vector, would likely represent a camera or other sensor that needs to be directed at

96

the target. The desired path of the inspector is relative to target being viewed. This

path is shown in Figure 4.2.

Figure 4.2: Relative Path of Inspector SPHERES

For this simulation, the inspector is tasked to collect information on all sides of

the target. This is accomplished by flying a circle in the X-Y plane of the global frame

while translating along the Z axis. In addition, the inspector is tasked to maneuver

slower along the first 135◦ of the circle before speeding up to complete the path in the

desired time. The purpose of this simulation is to show that the controller is capable

of varying speeds along the path while minimizing the position, velocity and pointing

errors. The control algorithm is considered successful if the target stays on its path

without rotating and if the inspector maintains the desired path and speed along its

path while pointing the sensor to the target.

4.3 Simulation Results

The simulation is designed to validate the control algorithm by demonstrating

the controller capabilities. Particularly this simulation is run to highlight the control

algorithm’s ability to command the satellite to maintain a specific path and speed

while simultaneously pointing at a target. Furthermore, this simulation demonstrates

97

the controller’s capability to translate SPHERES without changing the satellite ori-

entation because the target is required to translate without rotating. The body frame

coordinate system is shown for each SPHERES is depicted on the panels of each satel-

lite. The panel on the positive x-axis is shaded red, the panel on the positive y-axis

is shaded green, and the panel on the positive z-axis is shaded blue. In addition to

this, a sensor has been placed on positive z-axis of the inspector satellite. The sensor

field-of-view is illustrated as a yellow cone emitting from the location of the sensor.

Lastly, the simulation plots the satellite paths as the satellites move through them.

The desired path of the inspector has a cyan color while the actual path the inspector

takes is colored blue. The desired path of the target is shown by the magenta line

and the actual path of the target is displayed in red. Figure 4.3 pictorially describes

the initial phase of the simulation, showing the inspector slewing to the target.

Figure 4.3: Initial Phase of Simulation

Both SPHERES began with their coordinate frames aligned with the global

frame. This means the sensor is not facing the target. Thus, as the inspector begins

to perform the inspection, the satellite must rotate to face the target. This is can

be seen at time progresses to ten seconds. After ten seconds the inspector sensor

is pointing towards the target as commanded. The inspector takes ten seconds to

point to the target because the angular rate of rotation is limited to six degrees per

second, and due to the path requirements and the initial conditions, the sensor begins

pointing approximately sixty degrees away from the target. To improve this time,

one could either relax the constraint of the angular rate limiter or one set the initial

98

conditions of the inspector such that the pointing error of the sensor begins with a

smaller number. In any case, the initial phase of this test shows that the control

algorithm is capable of pointing the satellite to meet requirements. The remaining

portion of the test is shown in Figure 4.4.

Figure 4.4: Simulation of Satellite Inspection

After the inspector directed the sensor to the target, the satellites maintains the

correct orientation throughout the remaining portion of the test. The inspector also

travels around the target and maintains the correct speed and position along the path.

Recall that the inspector is tasked to fly around the target along the path shown in

Figure 4.2. Since the target is moving however, the desired path of the inspector the

path appears to stretch out along the target’s path. This effect is necessary to ensure

the relative path of the inspector is the same are the path requested by the user. Yet

if one looks down the path taken by the target then the circular path of the inspector

is revealed as in Figure 4.5.

The results from the simulation epitomize the capabilities of the speed and

path control algorithm. Further examination of the inspector pointing error indicates

that the control algorithm can successfully be used to point a sensor as desired. To

illustrate this, Figure 4.7 displays the inspector pointing error (or principal Euler

angle) as a function of time.

After the inspector satellite maneuvers the sensor to focus on the target the

pointing error never exceeds two degrees. This demonstrates that the control algo-

99

Figure 4.5: Path of Inspector Satellite

Figure 4.6: Simulation of Satellite Inspection with a Moving Target

100

Figure 4.7: Inspector Pointing Error

rithm is capable of reducing the control error described in Figure 3.2. Although jitter

can be observed in the pointing error displayed in Figure 4.7, once the satellite has

directed the sensor, this jitter only results in an average of one degree of error, which

is well within the requirements for most sensor applications that would be installed

on a satellite with the same properties as SPHERES. The quaternions and angular

rates of the inspector also reveals that the rate limiter prevented the controller from

spinning the satellite too fast.

As depicted in Figure 4.8, the angular rates of the inspector never exceed six de-

grees per second. In addition, once the sensor is pointed to the target (approximately

ten seconds) the quaternions behave in a sinusoidal fashion. This is as expected since

the inspector is circling around the target to keep the target in the sensor field of

view. The angular rates also appear to chatter throughout the simulation. This is

because the dead-zone is purposely small to provide more accuracy. The trade-off

is seen though through the chatter in the angular rates because the chatter results

in more fuel use. Selecting a dead-zone to meet mission needs is further discussed

101

Figure 4.8: Quaternions and Angular Rates of Inspector Satellite

in Section 4.4. Another dynamic of this system is observed when interrogating the

angular rates.

Figure 4.9 provides a close up view of the angular rates during a portion of the

this test. At this detail, the angular rates are easily observed to remain constant for a

time before appearing to chatter again. This is due to the periodic signal suppressor

designed to ‘kill’ the control signal after 0.4 seconds of every second. As a result, the

angular acceleration to zero for 0.6 seconds of every second. When this occurs the

angular velocity remains constant until the controller is allowed to run for the next

0.4 seconds. Next, the quaternions and angular rates of the target are displayed in

Figure 4.10.

Recall the target is commanded not rotate as the satellite translates. This is

achieved by commanding the negative z-axis of the target to always point straight

down. As one can see from Figure 4.10 not much is happening throughout the sim-

ulation. Although the angular rates are adjusted to counteract small deviations, the

satellite’s orientation never has any noticeable changes. The small deviations are

initially attributed solely to the fact the the principal axes of the satellite are not per-

102

Figure 4.9: Periodic Signal Suppressor Affects on Angular Rates

Figure 4.10: Quaternions and Angular Rates of Target Satellite

103

fectly aligned with this satellite body frame. Then as the angular rates are adjusted

through thrusting to compensate for this, opposing thrusts are applied to counter the

recently applied angular rates. Nonetheless, Figure 4.10 illustrates that this speed

and path control algorithm is capable of translating a satellite without changing the

satellite’s orientation.

Figure 4.11: Relative Motion of Inspector

Next, Figure 4.11 displays how the inspector translates relative to the target.

The ‘x’s placed along the plot’s relative position indicate the user specified position

for each specified point in time. Take note that the magnitude of the velocity values

increase after 128 seconds. This is because the satellite was tasked to speed up

along the x and y axis of the global frame at this point in time. The change in

sign of the velocity vectors simply indicate that the satellite is moving around the

other side of the target. The effects of the dead-zone and signal suppressor can be

observed through the velocity vector as well. Furthermore, the position error never

exceeded one millimeter for this test. Since this test had the inspector start in the

correct location however, another was run to ensure that the controller could correct

the translational errors as oppose to simply maintaining them. In this test, the

104

initial condition was such that the inspector begins with an error of 0.28 meters.

Figure 4.12 shows how the translational errors change with time when this test is

performed. This figure demonstrates that the inspector never deviates more than

two millimeters from its desired position relative to the target after fourteen seconds

have passed. In addition, the velocity never exceeds the imposed translational rate

limit of ten centimeters per second. Furthermore, once the initial velocity error is

corrected, the velocity error never exceeds one millimeter except for very short periods

of time in which case the velocity error does not exceed six millimeters per second.

Thus, the results mentioned herein validate the controller designed within this thesis.

Specifically, the controller is capable of allowing an inspector to track a target while

maneuvering along a prescribed path. In addition, the controller is capable holding a

specific orientation while translating.

Figure 4.12: Relative Motion of Inspector

4.4 Relationship Between Dead-Zone & System Performance

As mentioned in Section 3.2.6.1 the dead-zone nonlinearity effects impacts the

control errors as well as fuel usage. Previously, the dead-zone has been set to 0.0002

105

to minimize control errors. Although this decision does not have a major impact

within this thesis, future applications of this control algorithm may require a differ-

ent balance between fuel consumption and accuracy. Therefore, a dead-zone trade

study was performed to illustrate the relationship between control errors and fuel

consumption for a given dead-zone. This allows users to select which dead-zone is

best for their particular application of the speed and path control algorithm developed

herein. Figure 4.13 describes the relationship between the control error and the fuel

consumption.

Figure 4.13: Relationship Between Control Error & Fuel Consumption

Figure 4.13 demonstrates the relationship between the control error and fuel

consumption. The error term considers errors in both the satellites position and

orientation. Since these units are not equal, the author assigned one unit of error equal

to one centimeter or position error and half a degree of pointing error. In addition,

since this is a relative comparison of error, the errors are then normalized so that the

max error when the dead-zone ratios are equal is one. Additionally, DZf/DZt is the

ratio between the dead-zone values applied to control signal for force and the control

signal for torque respectively. A smaller dead-zone improves accuracy at the expense

106

of fuel, and the reverse is true when the dead-zone is relatively large. While this is to

be expected, this plot also shows that setting the dead-zone values differently results

in worse performance. This is attributed to the fact that a satellite’s orientation and

position in the global frame are still coupled even though the thruster pattern to

determine a satellite’s position and velocity is not. Next, Figure 4.14 illustrates how

error and fuel usage varies with dead-zone.

Figure 4.14: Comparison of Dead-zone with Control Error & Fuel Consumption

Figure 4.14 further reinforces the indirect relationship between fuel consumption

and control error. Furthermore, this plot provides further explanation to why the

dead-zone values should be the same for both the force and torque signals. For this

test, the translational errors require more control to direct as necessary than the

rotational error. Thus, when the dead-zone applied to the control force is larger

than the dead-zone applied to the control torque, greater errors are manifested in the

simulation. At the same time however, the fuel savings improve when compared to the

nominal case of DZf/DZt = 1. Since the relative difference in the errors between the

two cases far outweighs the relative savings in fuel consumption, the red DZf/DZt =

10 line of Figure 4.13 becomes worse. On the contrary, when DZf/DZt = 0.1 the

107

control force passes through a much smaller dead-zone than the control torque. This

results is a smaller error than the other cases, but the resulting fuel cost to do so is

much greater. Thus, DZf/DZt = 1 provides the best relationship for the dead-zones.

In addition, for this particular path, one would select a dead-zone of 0.01 for both

the dead-zone nonlinearities if one was more interested in fuel efficiency than control

error.

4.5 Summary of Research Results

The speed and path control algorithm has been validated through the use of

an inspection maneuver. Furthermore, this control algorithm is capable of keeping

a satellite’s position error to within two millimeters, its velocity error to within one

millimeter per second, and its pointing error to within two degrees. This has been

demonstrated through theoretical simulation with experimentally derived hardware

values. Nonetheless, in order to achieve the same level of precision on the actual

SPHERES platform the gains optimized for the theoretical simulation may need to

be tweaked to ensure the control algorithm is optimized when the satellite’s realisms

are included. The author believes this can be done by performing the same method for

gain optimization as was performed for each of the gains in Chapter III. Additionally,

the dead-zone investigation discussed in Section 4.4 illustrates how future users can

select the dead-zone value for each controller to meet their mission requirements.

Again, this test only considered theoretical conditions for the described inspection

maneuver. As a result, it is possible that these specific dead-zone values may not

reflect the user’s desires when tested in reality. Thus, the code for the dead-zone

study is included in Appendix D so that future users may use the same process for

investigating the dead-zone values affect accuracy and fuel efficiency. The bottom

line is that when applying this control algorithm to the actual SPHERES program,

the methods for determining the specific gain and dead-zone values should be of more

importance than the actual values provided within this research. Nonetheless, this

research has made a few contributions to the SPHERES program and opened up

108

opportunities for future work as well. These topics are the discussion of the next

chapter.

109

V. Conclusions

The goal of this research was to investigate enhancements to the SPHERES software

control suite and provide MIT’s SPHERES program with a speed and path control

algorithm. The speed and path control algorithm produced within this thesis is ca-

pable of commanding SPHERES to meet user-specified positions, orientations, and

velocities along relative paths within required tolerances. Specifically, the controller

is capable of allowing an inspector to track a target to within two degrees while trans-

lating along a path with less than two millimeters of position error and a millimeter

per second of velocity error. Once implemented, this control algorithm will enable

the SPHERES program to further pursue research on in-space robotic assembly and

other pursuits in which velocity control is particularly advantageous.

5.1 Research Contributions

Although work within the realm of relative satellite motion and formation space-

flight has been extensive, this research has contributed to the field. Specifically, this

research has introduced a control algorithm capable of being used for applications

involving precise speed and path control. In addition to creating a speed and path

controller for MIT’s SPHERES satellites, a simulation for SPHERES was created

without requiring the use of C++ code. Thus, this simulation contributes to MIT’s

SPHERES program by allowing future guest scientists of the SPHERES program to

interact with SPHERES without knowledge of C++. This capability allows a wider

pool of control engineers to provide insight into this program. With this in mind, the

MATLAB R© master script and the SIMULINK R© simulation it runs have been included

in Appendices A and B (and will be made available) for use as a basis for future guest

scientists to start from.

A method for selecting the gains for this control algorithm has also been sup-

plied. As missions and desire evolve, the specific values of the gains used within this

thesis may not reflect the optimal gains for future requirements. The method of gain

selection used within this thesis however, can still be applied to determine the optimal

110

gains for different program requirements. The MATLAB R© scripts used to determine

the optimal gains for the translational and rotational controllers are supplied in Ap-

pendix C. In addition, mission requirements may dictate that a different dead-zone

value should be selected to produce the desirable relationship between accuracy and

fuel efficiency. Figure 4.14 is provided to give users an understanding of how the

selection of the dead-zones affects control error and fuel consumption. Accompanying

this chart, the MATLAB R© code used to perform the dead-zone trade study is also

provided in Appendix D should further consideration be required.

5.2 Recommendations for Future Work

Up to this point the control algorithm has been developed, tested, and shown

to perform within reasonable tolerances. Yet this research only lays the groundwork

for the algorithm to be used on-board the satellites of the SPHERES program. The

next step is to convert the control algorithm into C++, and test the algorithm on the

SPHERES at MIT in their Space Systems Laboratory. Upon conclusion of this, the

control algorithm should be used on-board the International Space Station for further

analysis and application. At this stage the control algorithm would be used for MIT’s

SPHERES program to continue to provide a practical intermediate step to develop,

test, and validate autonomous formation spaceflight algorithms.

Finally, other avenues exist to further pursue research on this topic. Among

them includes incorporating the option for added realism within this simulation. This

could be achieved by including attitude and position error with noise corrupted mea-

surements, a changing mass moment of inertia from fuel consumption, or including

affects of air drag from within the ISS. An estimator would also need to be added

to this simulation as well. Another approach worth pursuing includes developing a

better user interface to allow parameterized paths or velocities to be input in a more

efficient manner. Optimal paths could also be developed that would take advantage

of the unique abilities of a speed and path controller. Subsequent research could also

be performed to include the option for SPHERES to switch between desired targets

111

during a simulation once an inspection or other maneuver is completed. This would

further enhance the development of using satellites for in-space refueling or robotic

assembly.

112

Appendix A. Algorithm Script

The following MATLAB R© script is used to operate the SPHERES simulation used in

this thesis. It should be noted that additional subroutines executed within the script

are included below the master script.

A.1 Simulation Master Script

The following code is titled ‘SPHERES simulation.m’ and is included below for

reference within this thesis

Listing A.1: Appendix1/SPHERES.m

1 %%%%%%%%%%%%%%%%%%%%%%%% SPHERES SIMULATION %%%%%%%%%%%%%%%%%%%%%%

%

% Master Script to model speed & path algorithms for MIT 's SPHERES

% program

%

6 % Author: Sam Barbaro AFIT ENY -3 06 Jan 2012

%

% Purpose: This script feeds constants & variables into the

% simulation SPHERES_3D_Simulation.mdl for various paths that can

% be set by the user. This script then plots the comparison of

11 % how well the states actually met the desired values.

%

% Model: This simulation considers all thrusters number 0-11, and

% is capable of changing SPHERES orientation as well as its

% position in global space.

16 %

% Programs Called: SPHERES_3D_Simulation_v3.mdl , skew.m,

% datainterp.m

%

%%

21

clc; clear all; close all;

113

%% Plan Desired Path and Speeds for SPHERES

%% & Set Initial Conditions

26 %%

%%%%%%%%%%%%%%%%%%%%% USER MAKES CHANGES HERE %%%%%%%%%%%%%%%%%%%%

%%

% Set Simulation Parameters

31 StepSize = 0.005; % How often should simulation update [sec]

Duration = 260.0; % How long to run simulation [sec]

% Set Deadzone Bandwidth of Control Force & Control Torque

Dband_f = 0.0002; % Deadzone Bandwidth of Control Force

Dband_t = 0.0002; % Deadzone Bandwidth of Control Torque

36 % Set Rate Limits

Rate_T = .10; % S/C will not exceed this speed [m/s]

Rate_R = 6; % S/C will not spin faster than this [deg/s]

% Define Path of SPHERES (The Target)

41 % This is done by picking desired relative positions and

% velocities in the global frame , as well as the Euler angles at

% each time of interest. There is no limit to how many times you

% select but a position , velocity , & Euler angle must be assigned

% for each time you select. In addition the Euler angles are for

46 % a Roll ,Pitch ,Yaw configuration like many aircraft. Lastly , an

% "c" is affixed to the beginning of these variables to denote

% that this information is for the SPHERES that defines the origin

% of the relative frame. This SPHERES is the chief to be

% inspected

51 % A POINT MUST BE SPECIFIED AT BEGINING AND END OF SIMULATION

% example: Note that time is in units of seconds , position and

% velocity are in the global frame and in meters and meters

% per second respectively , and Euler Angles are in degrees.

% ex: time = sec; pos = [x y z]; EA = [r p y]

56 % ex: t(#,1) =0.5; p(# ,1:3) =[1 0.02 0.5];

ct(1,1) = 0.0; cp(1 ,1:3) = [0.00 0.00 0.00];

ct(3,1) = Duration; cp(3 ,1:3) = [0.50 1.00 2.00];

114

% ct(1,1) = 0.0; cp(1 ,1:3) =[0 2.0000 0];

61 % ct(2,1) = 13.7; cp(2 ,1:3) =[0 1.9984 0.0789];

% ct(3,1) = 27.4; cp(3 ,1:3) =[0 1.9938 0.1577];

% ct(4,1) = 41.0; cp(4 ,1:3) =[0 1.9860 0.2363];

% ct(5,1) = 54.7; cp(5 ,1:3) =[0 1.9751 0.3145];

% ct(6,1) = 68.4; cp(6 ,1:3) =[0 1.9612 0.3922];

66 % ct(7,1) = 82.1; cp(7 ,1:3) =[0 1.9442 0.4693];

% ct(8,1) = 95.8; cp(8 ,1:3) =[0 1.9241 0.5456];

% ct(9,1) = 109.5; cp(9 ,1:3) =[0 1.9011 0.6211];

% ct(10,1) = 123.2; cp(10 ,1:3) =[0 1.8751 0.6957];

% ct(11,1) = 136.8; cp(11 ,1:3) =[0 1.8462 0.7691];

71 % ct(12,1) = 150.5; cp(12 ,1:3) =[0 1.8144 0.8414];

% ct(13,1) = 164.2; cp(13 ,1:3) =[0 1.7798 0.9123];

% ct(14,1) = 177.9; cp(14 ,1:3) =[0 1.7424 0.9819];

% ct(15,1) = 191.6; cp(15 ,1:3) =[0 1.7023 1.0499];

% ct(16,1) = 205.3; cp(16 ,1:3) =[0 1.6595 1.1162];

76 % ct(17,1) = 218.9; cp(17 ,1:3) =[0 1.6142 1.1808];

% ct(18,1) = 232.6; cp(18 ,1:3) =[0 1.5663 1.2436];

% ct(19,1) = 246.3; cp(19 ,1:3) =[0 1.5160 1.3045];

% ct(20,1) = Duration; cp(20 ,1:3) =[0 1.4634 1.3633];

81 % Set SPHERES Initial Rates

Euler_c = [0;0;0]; % initial euler angles [deg]

Omega_c = [0;0;0]; % initial angular rates [deg/s]

Pos_c = cp(1 ,1:3) ';% initial position of SPHERES [m] (global)

Vel_c = [0;0;0]; % initial velocity of SPHERES [m/s] (global)

86 % Set SPHERES Target Pointing Vector

Point_c = [0;0; -1]; % desired pointing vector [m] (body)

% body frame vector specifying what part of

% the inspector faces the target. This ...

could

% be for a camera or docking mechanism

91

% Define Path of SPHERES (The Inspector)

115

% This is done by picking the inspector 's desired range from the

% target in the global frame. In addition , the inspector 's

% initial conditions and desired pointing vector must also be

96 % specified. The desired position is specified as how far the

% inspector is away from the target using the global frames

% coordinates. The initial conditions specify where the satellite

% is in the global frame. Lastly , the desired pointing vector is

% a (3x1) body frame vector which identifies which part of the

101 % inspector is to point to the target. Finally , an "i" is affixed

% to the beggining of these variables to denote that this

% information is for the SPHERES that inspects the other(s)

% example: Note that time is in units of seconds , position is

% in the relative frame and in meters. The physical units of

106 % the pointing vector are irrelevant as the vector will be

% normalized. Just make sure the vector has the same units

% in each component.

% ex: time = sec; pos = [x y z]; pv = [x y z]

% ex: t(#,1) =0.5; p(# ,1:3) =[1 0.02 0.5];

111

% it(1,1) = 0.0; ip(1 ,1:3) = [-0.7000 0.0000 0.0000];

% it(2,1) = Duration; ip(2 ,1:3) = [-0.7000 0.0000 0.0000];

116 it(1,1) = 0.0; ip(1 ,1:3) = [0.4000 0.0000 -0.2000];

it(2,1) = 10; ip(2 ,1:3) = [0.3864 0.1035 -0.1778];

it(3,1) = 25; ip(3 ,1:3) = [0.3464 0.2000 -0.1556];

it(4,1) = 39; ip(4 ,1:3) = [0.2828 0.2828 -0.1333];

it(5,1) = 54; ip(5 ,1:3) = [0.2000 0.3464 -0.1111];

121 it(6,1) = 69; ip(6 ,1:3) = [0.1035 0.3864 -0.0889];

it(7,1) = 84; ip(7 ,1:3) = [0.0000 0.4000 -0.0667];

it(8,1) = 98; ip(8 ,1:3) = [-0.1035 0.3864 -0.0444];

it(9,1) = 113; ip(9 ,1:3) = [-0.2000 0.3464 -0.0222];

it(10 ,1) = 128; ip(10 ,1:3) = [-0.2828 0.2828 0.0000];

126 it(11 ,1) = 142; ip(11 ,1:3) = [-0.3759 0.1368 0.0222];

it(12 ,1) = 154; ip(12 ,1:3) = [-0.4000 0.0000 0.0444];

116

it(13 ,1) = 172; ip(13 ,1:3) = [-0.3464 -0.2000 0.0667];

it(14 ,1) = 186; ip(14 ,1:3) = [-0.2294 -0.3277 0.0889];

it(15 ,1) = 201; ip(15 ,1:3) = [-0.0695 -0.3939 0.1111];

131 it(16 ,1) = 216; ip(16 ,1:3) = [0.1035 -0.3864 0.1333];

it(17 ,1) = 231; ip(17 ,1:3) = [0.2571 -0.3064 0.1556];

it(18 ,1) = 245; ip(18 ,1:3) = [0.3625 -0.1690 0.1778];

it(19 ,1) = 260; ip(19 ,1:3) = [0.4000 0.0000 0.2000];

it(20 ,1) = Duration; ip(20 ,1:3) = [0.4000 0.0000 0.2000];

136

% Set SPHERES Initial Rates

Euler_i = [0;0;0]; % initial euler angles [deg]

% [roll , pitch , yaw] 3-2-1 Rotation

Omega_i = [0;0;0]; % initial angular rates [deg/s]

141 Pos_i = ip(1 ,1:3) '+Pos_c;

% initial position of SPHERES [m] (global)

Vel_i = [0;0;0]+ Vel_c;

% initial velocity of SPHERES [m/s] (global)

146 % Set SPHERES Inspector Pointing Vector

Point_i = [0;0;1]; % desired pointing vector [m] (body)

% body frame vector specifying what part of

% the inspector faces the target. This could

% be for a camera or docking mechanism

151

%%

%%%%%%%%%%%%%%%%%%%%%% END TYPICAL USER CHANGES %%%%%%%%%%%%%%%%%%

%%

156 %% Load SPHERES Constants

%%

% Mass Moments of Inertia

Eye = [1 0 0; 0 1 0; 0 0 1]; % Identity Matrix

MOI_Wet = [2.30e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

161 9.90e-5 2.42e-2 -2.54e-5;% SPHERES MOI w/ full tank

-2.95e-4 -2.54e-5 2.14e -2;];

117

MOI_Dry = [2.19e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.31e-2 -2.54e-5;% SPHERES MOI w/empty tank

-2.95e-4 -2.54e-5 2.13e -2;];

166 InMOI_Wet = inv(MOI_Wet); % shorthand

InMOI_Dry = inv(MOI_Dry); % shorthand

OneD_MOI_Wet = MOI_Wet (2,2); % MOI used for 1-D example

OneD_MOI_Dry = MOI_Dry (2,2); % MOI (dry) used for 1-D

171 % Mass of SPHERES

Mass_Wet = 4.16; % SPHERES mass with fuel in [Kg]

Mass_Dry = 3.55; % SPHERES mass without fuel in [Kg]

% Thruster Information

F = 0.11; % force of individual thruster [N]

176 l = 0.193; % length between thrusters [m]

% SPHERES Plant

A = [0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1;...

0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0;];

Bu = [0 0 0; 0 0 0; 0 0 0; ...

181 1/ Mass_Wet 0 0; 0 1/ Mass_Wet 0; 0 0 1/ Mass_Wet];

C = eye(6); % assumes all states provided by estimator

D = zeros (6,3); % control does not directly affect output

% Path & Speed Controller Gain Information

Kd = 0.352; % Gain for Quaternion Controller

186 Q1 = 1; % "Q" Weight for Position in LQR Controller

Q2 = 0.018; % "Q" Weight for Velocity in LQR Controller

R = 0.06; % "R" Weight for LQR Controller

Q = blkdiag(Q1,Q1,Q1,Q2,Q2,Q2); % "Q" Weighting Matrix

R = blkdiag(R,R,R); % "R" Weighting Matrix

191 [K,¬,¬] = lqr(A,Bu,Q,R);% LQR gain

% Preditiction Term

tau = 2; % determine slope of switch line (M=-1/tau)

% Define Dead Zone Range

% these values ensure translation stays

196 % w/in specified bandwidth

High_f = Dband_f /2; % force values above this aren 't reset

118

Low_f = -Dband_f /2; % force values below this aren 't reset

High_t = Dband_t /2; % torque values above this aren 't reset

Low_t = -Dband_t /2; % torque values below this aren 't reset

201 % Update Rate Limit Value

Rate_R = deg2rad(Rate_R);% convert from degrees to radians

%%

%% Run Simulation

206 % run simulation for target SPHERES and then manipulate data to

% update information for the other SPHERES to track.

%%%%%%%%%%%%%%%%%%%%%%%%%% SPHERES Chief %%%%%%%%%%%%%%%%%%%%%%%%%

% Paramaterize Important Points in Time

211 [time ,pos_c ,velo ,quat] = datainterp_v1(StepSize ,Duration ,ct,cp,...

Euler_c);

% Convert Global Frame Info into Body Frame Info

Quat_0 = quat; % Find Initial Quaternion Vector (4x1)

slpint = pos_c (1 ,1:3) ';% Initial Slope Intercept of Position

Pos_0 = Pos_c; % Call Position in Global Frame (3x1)

216 Vel_0 = Vel_c; % Call Velocity in Global Frame (3x1)

Omega_0 = deg2rad(Omega_c);% Convert to [rad/s] (3x1)

Initial = [Pos_0; Vel_0];% Simulation input for State Space

Point = Point_c; % Desired pointing vector (target s/c)

% Determine Where S/C should point

221 Targ = [pos_c (:,1), pos_c (:,2), pos_c (:,3)-ones(length(time) ,1)];

% Target will point in same direction

% of global frame for entire simulation

% Load Desired Data into Look -Up Tables (Global Frame)

Des_Vel_X = velo (:,1); % Desired Velocity on X-axis

226 Des_Vel_Y = velo (:,2); % Desired Velocity on Y-axis

Des_Vel_Z = velo (:,3); % Desired Velocity on Z-axis

Targ_Pos_X = Targ (:,1); % Target s/c points down

Targ_Pos_Y = Targ (:,2); % Target s/c points down

Targ_Pos_Z = Targ (:,3); % Target s/c points down

231 % Define Mass Moment of Inertia Matrix

119

% Eventually it would be nice to

% include a variable MOI matrix that

% changes as the fuel is consumed ,

% however due to complexity , that has

236 % not been accounted for at this point

% in the design

% MOI = 2e-2*Eye; % override to principal axis for test

% IMOI = inv(MOI);

MOI = MOI_Wet; % MMOT when SPHERES ' fuel tank is full

241 IMOI = InMOI_Wet; % Inverse of MMOI of SPHERES when full

% Run Simulation

sim('SPHERES_3D_Simulation_v3 ');

% Save Values

Position_Ch_d = Desired_Values.signals.values (: ,1:3);

246 Velocity_Ch_d = Desired_Values.signals.values (: ,4:6);

Position_Ch_e = Errors.signals.values (: ,1:3);

Velocity_Ch_e = Errors.signals.values (: ,4:6);

Quaternion_Ch_e = Errors.signals.values (: ,7:10);

Errors_Ch = Errors.signals.values (: ,1:11);

251 Position_Ch_bf = States.signals.values (: ,1:3);

Velocity_Ch_bf = States.signals.values (: ,4:6);

Quaternion_Ch = States.signals.values (: ,7:10);

EulerRate_Ch = States.signals.values (: ,11:13);

Position_Ch_gf = States_GlobalFrame.signals.values (: ,1:3);

256 Velocity_Ch_gf = States_GlobalFrame.signals.values (: ,4:6);

Control_For_Ch = Control.signals.values (: ,1:3);

Control_Tor_Ch = Control.signals.values (: ,4:6);

%%

261

%%%%%%%%%%%%%%%%%%%%% SPHERES Inspector %%%%%%%%%%%%%%%%%%%%%%%%%%

% Paramaterize Important Points in Time

% This is done for two vectors. First the vector specifing

% where the desired position with respect to the chief is

266 % interpolated for comparision in plots. Second the vector

120

% specifing where the desired position is with respect to the

% global frame is propogated for use within the simulation.

[time ,pos_i ,velo ,quat] = datainterp_v1(StepSize ,Duration ,it,ip,...

Euler_i);

pos = pos_i + Position_Ch_gf;

271 velo = velo + Velocity_Ch_gf;

% Convert Global Frame Info into Body Frame Info

Quat_0 = quat; % Find Initial Quaternion Vector (4x1)

slpint = pos (1 ,1:3) '; % Initial Slope Intercept of Position

Pos_0 = Pos_i; % Call Position in Global Frame (3x1)

276 Vel_0 = Vel_i; % Call Velocity in Global Frame (3x1)

Omega_0 = deg2rad(Omega_i);% Convert to [rad/s] (3x1)

Initial = [Pos_0; Vel_0]; % Simulation input for State Space

Point = Point_i; % Pointing vector (inspector s/c)

% Load Desired Data into Look -Up Tables (Global Frame)

281 Des_Vel_X= velo (:,1); % Desired Velocity on X-axis

Des_Vel_Y= velo (:,2); % Desired Velocity on Y-axis

Des_Vel_Z= velo (:,3); % Desired Velocity on Z-axis

Targ_Pos_X = Position_Ch_gf (:,1); % s/c should point to target

Targ_Pos_Y = Position_Ch_gf (:,2); % s/c should point to target

286 Targ_Pos_Z = Position_Ch_gf (:,3); % s/c should point to target

% Define Mass Moment of Inertia Matrix

% Eventually it would be nice to

% include a variable MOI matrix that

% changes as the fuel is consumed ,

291 % however due to complexity , that has

% not been accounted for at this point

% in the design

% MOI = 2e-2*Eye; % override to principal axis for test

% IMOI = inv(MOI);

296 % MOI = MOI_Wet; % MMOT when SPHERES ' fuel tank is full

% IMOI = InMOI_Wet; % Inverse of MMOI of SPHERES when full

% Run Simulation

sim('SPHERES_3D_Simulation_v3 ');

% Save Values

121

301 Position_In_d = Desired_Values.signals.values (: ,1:3);

Velocity_In_d = Desired_Values.signals.values (: ,4:6);

Position_In_e = Errors.signals.values (: ,1:3);

Velocity_In_e = Errors.signals.values (: ,4:6);

Quaternion_In_e = Errors.signals.values (: ,7:10);

306 Errors_In = Errors.signals.values (: ,1:11);

Position_In_bf = States.signals.values (: ,1:3);

Velocity_In_bf = States.signals.values (: ,4:6);

Quaternion_In = States.signals.values (: ,7:10);

EulerRate_In = States.signals.values (: ,11:13);

311 Position_In_gf = States_GlobalFrame.signals.values (: ,1:3);

Velocity_In_gf = States_GlobalFrame.signals.values (: ,4:6);

Control_For_In = Control.signals.values (: ,1:3);

Control_Tor_In = Control.signals.values (: ,4:6);

316 %%

%% Relative Information

% Find distance between true Chief and desired Inspector

% Distance = Position_InspectorDesired - Position_TrueChief

321 RHO_des = pos - Position_Ch_gf;

VEL_des = velo - Velocity_Ch_gf;

% Find distance between true Chief and true Inspector\

% Distance = Position_TrueInspector - Position_TrueChief

RHO_tru = Position_In_gf - Position_Ch_gf;

326 VEL_tru = Velocity_In_gf - Velocity_Ch_gf;

% Shift user input points into correct location

IP = zeros(size(ip ,1) ,3);

for ctr = 1:size(ip ,1)

ind = find(time ≥ it(ctr) ,1,'first ');

331 IP(ctr ,1:3) = RHO_des(ind ,1:3);

end

%% Format and Plot Results

122

336 % Plotting and Animation Commands are removed for script included

% within the thesis because plotting commands don 't add to the

% focus of this research

A.2 Data Interpretation

Within the ‘SPHERES Simulation.m’ code the sub-routine ‘datainterp.m’ is

called to interpret the user inputs for each SPHERES in the simulation. The function

is included below for reference.

Listing A.2: Appendix1/datainterp.m

function [time ,pos ,velo ,quat]= datainterp_v1(SimDelT ,SimTime ,tpt ,...

ppt ,euler)

2 %%

%

% Author: Sam Barbaro AFIT ENY -3 10 Jan 2012

%

% Purpose: This function is a sub -routine for the SPHERES

7 % simulation. It serves to take users desired values at each

% point of interest and develop arrays that can be built into a

% table in the actual simulation.

%

% Inputs:

12 % SimDelT - Time Step Used in Simulation (nx1) Vector [sec]

% SimTime - Total Time Simulation is Run (1x1) Scalar [sec]

% tpt - Time Points Specified by User (mx1) Vector [sec]

% ppt - Posistion Points Chosen by User (mx3) Vector [m]

% euler - Initial Rotation by Euler Angle (3x1) Vector [deg]

17 %

% Outputs:

% time - Time Array (nx1) Vector [sec]

% pos - Position Array (nx3) Vector [m]

% velo - Velocity Array (nx3) Vector [m/sec]

123

22 % quat - Initial Quaternion Vector (4x1) Vector []

%

%%

%% Find Time Array

27 time = 0: SimDelT:SimTime; % build time array for simulation

time = time '; % make time a column vector

%% Initialize Variables

len = length(tpt); % find number of points of interest

32 dim = length(time); % find length of time array

ind = zeros(len ,1); % initialise indexing term for loop

mx = zeros(dim -1,1); % initialize slope of x vs. t

my = mx; % initialize slope of y vs. t

mz = mx; % initialize slope of z vs. t

37 bx = mx; % initialize x-intercept

by = mx; % initialize y-intercept

bz = mx; % initialize z-intercept

velo = zeros(dim ,3); % initialize desired velocity vector

pos = velo; % initialize desired position vector

42

%% Find Slope and Intercept Information

for ctr = 1:len

ind(ctr) = find(time ≥ tpt(ctr),1,'first ');

pos(ind(ctr) ,:) = ppt(ctr ,1:3);

47 if ctr ≤ len -1

mx(ctr ,1)=(ppt(ctr+1,1)-ppt(ctr ,1))/(tpt(ctr+1,1)-tpt(ctr ,1));

my(ctr ,1)=(ppt(ctr+1,2)-ppt(ctr ,2))/(tpt(ctr+1,1)-tpt(ctr ,1));

mz(ctr ,1)=(ppt(ctr+1,3)-ppt(ctr ,3))/(tpt(ctr+1,1)-tpt(ctr ,1));

bx(ctr ,1)= ppt(ctr ,1)-mx(ctr ,1)*tpt(ctr ,1);

52 by(ctr ,1)= ppt(ctr ,2)-my(ctr ,1)*tpt(ctr ,1);

bz(ctr ,1)= ppt(ctr ,3)-mz(ctr ,1)*tpt(ctr ,1);

end

end

124

57 %% Build Position & Velocity Vector

% If position = slope*time+intercept

% Then velocity = slope

for block = 1:len -1;

for ctr = ind(block ,1):1:ind(block +1,1);

62 pos(ctr ,:) = [mx(block)*time(ctr ,1)+bx(block), ...

my(block)*time(ctr ,1)+by(block), ...

mz(block)*time(ctr ,1)+bz(block)];

velo(ctr ,:) = [mx(block) my(block) mz(block)];

end

67 end

%% Find Inital Quaternions

% verify Euler Angles values are between 0 & 360 degrees

euler = mod(euler ,360);

72 % convert Euler Angles to radians

euler = deg2rad(euler);

% Convert Euler Angles to rotation matrix

se1 = sin(euler (1)); ce1 = cos(euler (1));

77 se2 = sin(euler (2)); ce2 = cos(euler (2));

se3 = sin(euler (3)); ce3 = cos(euler (3));

% calculate 3-2-1 rotation matrix based of euler angles

R = [ce2*ce3 ce1*se3 + se1*se2*ce3 se1*se3 - ce1*ce3*se2 ;...

-ce2*se3 ce1*ce3 - se1*se2*se3 se1*ce3 + ce1*se3*se2 ;...

82 se2 -se1*ce2 ce1*ce2];

% find quaternion vector (4x1) from rotation matrix

% (use eigen -axis)

tr=trace(R);

if abs(tr -3) ≤ eps % no rotation

87 a = [0 0 1]; % eigen -axis

phi = 0; % euler angle

q = [0;0;0;1]; % quaternion vector

else % arbitary rotation

phi=acos ((1/2) *(tr -1)); % euler angle

125

92 ax =(1/(2* sin(phi)))*(R'-R); % skewed representation

a=[ax(3,2);ax(1,3);ax(2,1)]; % of a eigen -axis

q4=cos(phi /2); % 4th quaternion

qu=sin(phi /2)*a; % 1st 3 quaternions

q=[qu;q4]; % combine quaternions

97 end

quat = q; % save quaternion

A.3 Skew Matrix

Within the ‘SPHERES Simulation.m’ code the sub-routine ‘skew.m’ is called

to convert a three by one column vector into that vector’s skew representation. The

function is included below for reference.

Listing A.3: Appendix1/skew.m

1 function x_cross=skew(x)

%Converts a 3 by 1 vector into a skew -symmetric matrix

% Check for correct size

6 if max(size(x)) 6=3 || min(size(x)) 6= 1

disp('not a 3by1 vector ')

return

end

11 x_cross = [0 -x(3) x(2); x(3) 0 -x(1); -x(2) x(1) 0];

end

%eof

126

Appendix B. Simulation Diagrams

The SIMULINK R© diagram used to develop and test the speed and path control al-

gorithm described within this thesis has been included here for reference. This sim-

ulation consists of numerous subsystems. Thus the appendix is organized to show

the highest level of detail first, and then discuss each section or ‘block’ with their

subsystems. This appendix is ordered to discussed the ‘Error Determination’ block in

Section B.1, the ‘Speed & Path Controller’ block next in Section B.2, followed by the

’SPHERES Plant’ block in Section B.3, and lastly, the ‘User Inputs’ and ‘Outputs’

blocks are discussed in Section B.4. The SIMULINK R© overview is shown in Fig-

ure B.1. This picture depicts how the top-level of the SIMULINK R© model appears.

B.1 Error Determination

The ‘Error Determination’ block performs all functions described in Section3.1.

The block’s overview is shown illustrated in Figure B.2. This block has three subsys-

tems. The first subsystem splits the satellite’s state vector and is depicted through

Figure B.3. Once the translation error has been determined in the global frame, Fig-

ure B.6 shows how the next subsystem rotates those errors to the body frame of the

satellite. Figure B.7 shows how the quaternion error is calculated to determine how

to rotate the satellite body frame to the desired orientation.

B.1.1 Split State Subsystem. Figure B.3 shows how the states are split

into four main components. One section contains the position vector, one holds the

velocity vector, a third contains the quaternions, and the fourth component is the

angular rates of the satellite.

The ‘Split-States’ block not only divides the state vector into the four groups,

but it also uses the quaternions to compute the rotation matrix that converts infor-

mation out of the global frame and into the body frame. This process is expounded

upon in Figure B.6.

127

F
igu

re
B

.1:
S
p

eed
&

P
ath

C
on

trol
S
im

u
lation

O
verv

iew

128

Desire(! Position & velocity in Glollal Frame (6>::1) ~Desired Translational States (Gleba Frame)

Target Position in Global Frame (3x1) ~Target Position in Global Frame (3x 1)

Userl~uts

(Desired Values)

~St:teVectorGiobaiFrnme(1 3x1)

SPHERES 3-D Model
Quaternion Controller

Translational Motion with LQR Controller

TranslationaiErrors(6x1) H Trnnsl!tionaiErras(6x 1)

OuaterriroError(4x 1) H Ou:tern onError(4x1)

Aff;lUI<J"Rates(3x1) H ArY;Jular Rates(3x1)

Thrust Pronle (12x1) H TITustProfile (1 21:1) St<teVector (13x 1)~StateVector(13< 1)

Velocity lnBcdyFrame {3x1) H v etocity(3x1)

Speed&P<fi1CortrllAI[1Jrittrnto be

lmplemerteCI on SPHERES

Oli:puts

F
igu

re
B

.2:
E

rror
D

eterm
in

ation
O

verv
iew

129

Desired Translational
States (Global Frame)

State Vector
Global Frame

(13x1)

Target Position in
Global Frame (3x 1)

Error Determination
(Translational: error found in global frame & converted to body frame

Rotational: found rotation between desired & actual orientation)

Desired Translational States

Split States

Position in Global Frame (3x1)

Veloc~y in Global Frame (3x1)

) o Error in Trans lational States .. 1 Error of Translational States in Global Frame (6x1)

I X -1 13~31
Translational State Y I

and Error Vector Z I
Orientation Xdot I

IYdot I
I Zdot I

Errors of Translational states in Body Frame (6x1)

Rotation Matrix (3x3)

Rotate from Global Frame to Body Frame

[3x3]
Rbi (3x3) (

3
x

3
] Rotation Matrix (3x3) Desired Quatemions (4x 1)1

Velocity in Body Frame
(3x 1)

l-"--------------J~Desired Pointing Vector in Global Frame (3x1)

Determine Ouaternion Error

6
Translational

Errors (6x1)

F
igu

re
B

.3:
S
p
lit

S
tate

V
ector

130

Split States

....J •1 Quaternions (4x1) Rotation Matrix from Global Frame to Body Frame (3x3)

Use Current Quaternions to Create a Rotation Matrix to take

Values from the G lobal Frame to the Body Frame

[3x

Product

[3x3]

[3x3]
Rbi (3x3)

F
igu

re
B

.4:
R

otation
M

atrix
to

R
otate

In
form

ation
from

G
lob

al
F

ram
e

to
B

o
d
y

F
ram

e

131

Use Current Quaternions to Create a Rotation Matrix to take
Values from the Global Frame to the Body Frame

Transpose 1st 3

1st 3 Quaternions

4th Quaternion

This Diagram Should Read:
R = (q_ 4'2- q'T*q)*l + 2*q*q'T- 2*q_ 4*skew(q)

*Let q = 1st 3 Quaternions in this equation

Skew Matrix

ldent~y

Matrix

[3x3)

[3x3]

F
igu

re
B

.5:
S
kew

M
atrix

132

Skew Matrix

This subsystem takes a (3 x 1) Vector and outputs its Skew Matrix representation

3

AI~

Constant Create 3x3 Matrix

B.1.2 Subsystem to Determine Translational Errors. The translational er-

rors are determined in the global frame, but must be rotated into the body frame

before they can be used by the controller. Figure B.6 describes how this process is

performed.

B.1.3 Subsystem to Determine Quaternion Error. The quaternion error

needs to be calculated before the satellite orientation can be restored. This is done

by determining where the satellite is pointing and where it should point. Next the

eigenaxis and principle Euler angle are determined from these two vectors. The desired

quaternions can then be converted from the eigenaxis and Euler angle. The singularity

from the eigenaxis method is thus avoided with the use of an ‘if/else’. Figure B.7 shows

how the desired quaternions are created and Figure B.8 depicts how the eigenaxis and

Euler angle are found.

B.2 Speed & Path Controller

The ‘Speed & Path Controller’ block performs all functions described in Section3.2.

This block’s overview is shown illustrated in Figure B.9. This block has four sub-

systems. The first subsystem consists of the bang-bang controller used to provide

translational control. This subsystem is illustrated in Figure B.10. The orientation

controller, or quaternion controller is shown in Figure B.11 depicts how the Lyapunov

equation derived in Section 3.2.4 is used to control the satellite quaternions. Both of

these controllers are subject to system non-linearities as described in Section 3.2.6.

Figure B.12 shows how these two controllers are modified these non-linearities. Fig-

ure B.15 shows an overview of how the two control signals are merged and converted

into one thrust vector for the satellite. The signal to thrust conversion consists of two

additional subsystems. These subsystems provide insight into the logic for convert-

ing translations and rotations into a series of zeros and ones to represent the thrust

profile. Figure B.16 and Figure B.17 show a series of ‘if/else’ statements are used to

convert the control force and control torque signals into a thrust profile.

133

F
igu

re
B

.6:
C

on
vert

T
ran

slation
al

E
rrors

to
th

e
B

o
d
y

F
ram

e
from

th
e

G
lob

al
F

ram
e

134

2
[3x3]

Rotation Matrix
(3x3)

Rotate Global Frame
to Body Frame

3 Position in the Global Frame

3
Velocity in the Global Frame [3x3]

F
igu

re
B

.7:
D

eterm
in

e
Q

u
atern

ion
E

rror

135

Rotation Matrix
(3x3)

[3x3[

Commanded Pointing
Vector in body frame

(3x1)

Normalization

Quaternion Error Determination
(Calculate Eigenaxis & Principal Euler Angle)

I -J 11-1 Desired Pointing Vector Eigenaxis of Rotation

~--~_-1 .. ~1 Commanded Pointing Vector Euler Angle~

Eigenaxis & Principal Euler Angle
q4

Ouaternions
(4x1)1

F
igu

re
B

.8:
D

eterm
in

e
E

igen
ax

is
of

R
otation

&
P

rin
cip

al
E

u
ler

A
n
gle

136

Eigenaxis & Principal Euler Angle

Commanded
Pointing Vector

<:2) • I lltl

G) I • I

Desired
Pointing Vector

Mag1

1

Eigenaxis of Rotation

F
igu

re
B

.9:
S
p

eed
&

P
ath

C
on

troller
O

verv
iew

137

3-0 Relative Controller
'Errorsare inbodyframe•

CortraFcrce lnBodyFrane(Jx1)

(2) 4
~l ouaternlrnError(4x1)

QuatemionError (4x1)
Controi Tor(JJelnBoctyFrane(Jx1)

J " I _ ~~ An~larRates (~1)
AAgularRates (3x1)

Control lerversion3
Developed via Lyapunov Equation

(Siighllymore intu1tfve)

Velocity (3x1)

SPHERES Controller

~Cortro1 Force (Jx1)
contro1ForceSignal(~1l

Crntroi TcrqueSignal(~t)

ControllerNon-Linearibes

I ~ 1
_ lild Focce Signal (ax!)

Thrust Vector(1::?x1)

1.. 1
_ la>I TCfi!ueSignal (3x1)

LogictoConvertandMergeControl
Signals to Thrust Vector. The Thrust
Vector is a {12x1) array corresponding
to each thruster on SPHERES_ This

array contains 1's and O's in which
the1'sindicatelhe thruster isfiting,

and lheO'smean that specificthruster
is idle at lhatpoint intime

B.2.1 Control Algorithm. The translational states are controlled with the

use of a bang-bang controller. This is shown in Figure B.10. In addition, Figure B.11

how the spacecraft quaternions are controlled using the controller derived from the

Lyapunov function developed in Section 3.2.4.

B.2.2 Control Non-Linearities. Once the control signal has been created

to correct both the translational and rotational errors, the signal is run through

the necessary non-linearities. This is shown in Figure B.12. In addition, both control

signals are passed through a rate limiter. This block checks to ensure the translational

and rotational speeds of the satellite do not exceed constraints.

B.2.3 Control Signal Processing. Finally, before the control signals can in-

teract with the SPHERES plant to make the required corrections, the signals must

be converted into a thrust vector. The general process for this is described in Fig-

ure B.15. Since, specific thruster pairs cause the satellite to translate and different

pairs cause the satellite to rotate, this process is broken into two portions. The trans-

lational component is shown in Figure B.16, and the rotational piece is included in

Figure B.17.

B.3 SPHERES Plant

The ‘SPHERES Plant’ block performs all functions described in Section2.5. This

block’s overview is shown illustrated in Figure B.18. This block has two subsystems

each with a number of additional subsystems. The first subsystem derives how the

thrusters apply forces and torques on the satellite. The diagrams of this process are

included in Figure B.19. The second subsystem uses the applied forces and torques to

update the state vector of the satellite. This includes two parts. The satellites position

and velocity must be updated as well as the satellites quaternions and angular rates.

B.3.1 Calculate Force & Torque from Thrust. Before the plant can update

the state vector, it needs to determine how the thrusters are causing the satellite

138

F
igu

re
B

.10:
T

ran
slation

al
C

on
troller

139

Position & Velocity Controller
Position LOR

Velocity LOR Prediction Term

Determine the sign of the input (x + tau*x_dot)

Pos~ion LOR1

Veloc~y LOR1 Prediction Term1

Determine the sign of the input (x + tau*x_dot)

Pos~ion LOR2

Velocity LOR2 Prediction Term2

Determine the sign of the input (x + tau*x_dot)

F
igu

re
B

.11:
Q

u
atern

ion
C

on
troller

140

Quaternion Controller

2
3

3
Angular Rates (3x1)

Skew Matrix

3

MOl

Derivative Gain

I
3 .IKd

3

3

Desired Control law:
u = omega_skew*MOI*omega- Kd*omega -1st3_Quat

Control Torque
in Body Frame

(3x1)

F
igu

re
B

.12:
C

on
troller

N
on

-L
in

earities

141

Dynamic

Controller Non-Linearities

I
0

... 1 Force Signal (3x1)

Velocity Body Frame

(3x1)
Force Signal I - ~ (

) - ... I Velocity Body Frame (3x1)
Control Force Signal (3x1)

Translational Rate Limiter

I o ... 1 Torque Signal (3x1)

Torque Signal I - ~ (

) - ... I Omega (3x1)

Angular Rates

(3x1)
Rotational Rate Limiter

Control Tocque Signal (3x1)

F
igu

re
B

.13:
T

ran
slation

al
R

ate-L
im

iter

142

Translational Rate Limiter Along X-axis

Translational Rate Limiter Along Y-axis

Translational Rate Limiter Along Z-axis

F
igu

re
B

.14:
R

otaion
al

R
ate-L

im
iter

143

Rotational Rate Limiter Along X-axis

Rotational Rate Limiter Along Y -axis

Rotational Rate Limiter Along Z-axis

F
igu

re
B

.15:
C

on
vert

C
on

trol
S
ign

al
to

T
h
ru

st
V

ector

144

Force Signal
(3x1)

Torque Signal
(3x1)

Convert Control Signals into Thrust Profile

Translation Sign (3x1) Thrust Vector

Translation Thruster Logic

Rotatation Sign (3x1) Thrust Vector

Rotation Thruster Logic

12

Saturation is to ensure Thrust
Vector is just 1 's and D's

F
igu

re
B

.16:
C

on
vert

C
on

trol
F

orce
to

T
h
ru

st
V

ector

145

Determine Which Thrusters to Fire to Translate SPHERES to Desired Position

Translation about X axis

12

12

Translation about Y axis

111

12

(+) Fire

12

Translation about Z axis

112

12

F
igu

re
B

.17:
C

on
vert

C
on

trol
T

orq
u
e

to
T

h
ru

st
V

ector

146

Determine Which Thrusters to Fire to Rotate SPHERES to Desired Position

Rotation about X axis

12

12

Rotation about Y axis

111

12

12

Rotation about Z axis

112

12

.· +
Thrust
Vector

F
igu

re
B

.18:
D

iagram
of

S
P

H
E

R
E

S
P

lan
t

147

SPHERES 3·0 Plant

3
Torque (3x1) I ~I

) -
1
1'; ~!Thrust Profile (12x1) State Vector (13x1)

3 Thrust Profile (12x1)
Force (3x1) I ~I Force (3x1)

Interpret Torques & Forces from Thrust Vector State Space Plant

12

Sum of
Elements

Record number
of thrusters firing

13

State Vector
(13x1)

to move. The force and torques generated from the thrusters are determined in

Figure B.19.

B.3.1.1 Convert Thrust to Force. The force vector is recreated using

a number of ‘if/else’ statements. These statements are applied determine if a force

is applied to each axis in the body frame. Figure B.20 provides an overview of this

process and Figures B.21, B.22, and B.23 provide further detail for each body frame

axis.

B.3.1.2 Convert Thrust to Torque. The torque vector is recreated

using a number of ‘if/else’ statements. These statements are applied determine if a

torque is applied about each axis in the body frame. Figure B.24 provides an overview

of this process and Figures B.25, B.26, and B.27 provide further detail for each body

frame axis.

B.3.2 Update State Vector. Once the force and torque vectors have been

determined from the thrust profile, the satellite state vectors can be updated. in a

general sense, this is accomplished in Figure B.28.

B.3.2.1 Update Position & Velocity. The position and velocity of the

satellite are updated in Figure B.29. It is worth noting that the actual update is

performed in the global frame, but at the moment the force vector is in the body

frame. Figure B.30 shows how the force vector is rotated into the global frame before

the position and velocity are updated using state-space techniques.

B.3.2.2 Update Quaternions & Angular Rates. Both the quaternions

and the angular rates are updated in Figure B.32. This process uses the equations

explained in Section 2.5.2. Since a number of subsystems are embedded within Fig-

ure B.32, the quaternion subsystem will be discussed first and then the angular rates

are explained second.

148

F
igu

re
B

.19:
C

on
vert

T
h
ru

st
V

ector
in

to
A

p
p
lied

F
orce

&
T

orq
u
e

149

) 12

Thrust (12x1)

Interpret External Torques and Forces from Thrust

This takes a 12x1 input vector detailing which thruster
is firing and outputs a 3x1 vector of torque information

in the body frame coordinate frame

.. 3

12 ... Thrust Vector (12x1) Rotation Vector (3x1)

Rotation Thruster Logic

This takes a 12x1 input vector detailing which thruster
is firing and outputs a 3x1 vector of force information

in the body frame coordinate frame

3

12
Thrust Vector (12x1) Translation Vector (3x1)

Translation Thruster Logic

Rotation Vector (3x1)
Identifies Direction of Torque

in SPHERES Body Frame

Translation Vector (3x1)
Identifies Direction of Translation

in SPHERES Body Frame

Magnitude
of Torque

~~
~ Torque (3x1)

Magnitude
of Force

~
3
~

Force (3x1)

F
igu

re
B

.20:
C

on
vert

T
h
ru

st
V

ector
in

to
A

p
p
lied

F
orce

150

Determine Which Thrusters for Fire to Translate SPHERES to Desired Position

Thrust Vector (12x1) X Translation (scalar)

Determine Translation about X-axis

J ·- • ~I Thrust Vector (12x1) YTranslation (scalar)

Thrust Vector
(12x1)

Determine Translation about Y-axis

Thrust Vector (12x1) Z Translation (scalar)

Determine Translation about Z-axis

I ~~~
Translation Vector

(3x1)

F
igu

re
B

.21:
C

alcu
late

A
p
p
lied

F
orce

A
lon

g
X

-ax
is

151

if(..) 1-·-·--- ·-·-·---·-·---·-·-·-J ~ 11s there a (+X) Translation

12 ~I "1

else

If

G)12 k l =u

r Thrust Vector X Translation
(12x1) (scalar)

if(.) Is there a (-X) Translation

12 ~I "1

else
--
111

F
igu

re
B

.22:
C

alcu
late

A
p
p
lied

F
orce

A
lon

g
Y

-ax
is

152

if(..) 1-·-·---·-·-·---·-·---·-·-·-J ~ 1 Is there a (+Y) translation

12 ~I "1

else

If

G)12 n =u

r Thrust Vector Y Translation
(12x1) (scalar)

if(.) Is there a (-Y) translation

12 ~I "1

else
--
111

F
igu

re
B

.23:
C

alcu
late

A
p
p
lied

F
orce

A
lon

g
Z

-ax
is

153

if(. .) 1---------------------------J ~ 1 Is there a (+Z) translation

12 ~I "1

else

If

12 L-1 = U +
1 -

Thrust Vector Z Translation
(12x1) (scalar)

if(.) Is there a (-Z) translation

12 ~I "1

else
--
lf1

F
igu

re
B

.24:
C

on
vert

T
h
ru

st
V

ector
in

to
A

p
p
lied

T
orq

u
e

154

Determine Which Thrusters for Fire to Rotate SPHERES to Desired Orientation

Thrust Vector (12x1) X Rotation (scalar)

Determine Rotation about X-axis

12
~ThrustVector (12x1) Y Rotation (scalar)

Thrust Vector
(12x1)

Determine Rotation about Y-axis

Thrust Vector (12x1) Z Rotation (scalar)

Determine Rotation about Z-axis

F
igu

re
B

.25:
C

alcu
late

A
p
p
lied

T
orq

u
e

A
lon

g
X

-ax
is

155

if(. .) 1---- --- -- - - -- --- --J ~ Is there a (+X) rotation

12 ~I u1

else

If

G) 12 k l =u

r Thrust Vector X Rotation
(12x1) (scalar)

I if(.) Is there a for (-X) rotation

12 ~I u1

else

--
lf1

F
igu

re
B

.26:
C

alcu
late

A
p
p
lied

T
orq

u
e

A
lon

g
Y

-ax
is

156

if(. .) 1---- --- -- - - -- --- --J ~ Is there a (+Y) rotation

12 ~I u1

else

If

G) 12 n =u

r Thrust Vector Y Rotation
(12x1) (scalar)

I if(.) Is there a for (-Y) rotation

12 ~I u1

else

--
lf1

F
igu

re
B

.27:
C

alcu
late

A
p
p
lied

T
orq

u
e

A
lon

g
Z

-ax
is

157

if(. .) 1------------------J ~ Is there a (+Z) rotation

12 ~I u1
else

If

I
012

Thrust Vector
(12x1)

I
if(.) Is there a for (-Z) rotation

12 ""I u1

else
--
lf1

F
igu

re
B

.28:
U

p
d
ate

S
tate

V
ector

v
ia

R
ate

E
q
u
ation

s

158

Plant for Position and Velocity

3
l ~I Force Vector in Global Frame (3x1)

Torque (3x1)

Translational States in Global Frame (6x1)

Quaternions (4x1)

Quaternions

Euler Rates

Plant for Quaternions and Euler Rates

6

State Vector (13x1)

3

F
igu

re
B

.29:
C

on
vert

T
ran

slation
S
tates

to
G

lob
al

F
ram

e
&

A
p
p
ly

to
S
tate

S
p
ace

M
o
d
el

159 Quaternions (4x1)

Force Vector

in Global Frame

(3x1)

Use Current Quaternions to Create a Rotation Matrix to take

Values from the Body Frame to the Global Frame

Rotation Matrix from Body Frame to Global Frame (3x3)
[3x3)

of Position & Velocity

F
igu

re
B

.30:
C

reate
R

otation
M

atrix
to

G
o

F
rom

B
o
d
y

F
ram

e
to

G
lob

al
F

ram
e

160

Use Current Quaternions to Create a Rotation Matrix to take
Values from the Body Frame to the Global Frame

Transpose 1st 3
Ouatemions
r------

4th Quaternion

This Diagram Should Read:
R = ((q_ 4'2- q'T"q)'l + 2'q'q'T- 2'q_ 4' skew(q)]'

"'Let q =1 st 3 Quatemions in this equation

Skew Matrix

[3x3]

Rotation Matrix from
Body Frame to Global Frame

(3x3)

F
igu

re
B

.31:
S
kew

M
atrix

161

Skew Matrix

This subsystem takes a (3 x 1) Vector and outputs its Skew Matrix representation

3

AI~

Constant Create 3x3 Matrix

F
igu

re
B

.32:
Q

u
atern

ion
s

&
E

u
ler

R
ates

of
P

lan
t

M
o
d
el

162

Plant for Position and Velocity

3
l ~I Force Vector in Global Frame (3x1)

Torque (3x1)

Translational States in Global Frame (6x1)

Quaternions (4x1)

Quaternions

Euler Rates

Plant for Quaternions and Euler Rates

6

State Vector (13x1)

3

The quaternions are updated in two parts. The first three quaternions are

updated together and the fourth quaternion is updated using a separate equation.

Figure B.33 provides the overview of this process. Additionally, Figure B.34 describes

how the first three quaternions are updated and Figure B.35 shows how the fourth

quaternion is updated.

In addition to updating the quaternion rates, the angular rates are updated as

well. Figure B.36 shows how the rate of the angular rates is integrated to determine

the new angular rates, and Figure B.37 describes the process for updating the rate of

the angular rates. This process uses Equation 2.50.

B.4 Inputs & Outputs

The last two subsystems to be mentioned from Figure B.1 are the ‘User Inputs’

and ‘Outputs’ blocks. The ‘User Inputs’ block loads the users inputs from a table and

inserts them into the simulation as shown in Figurefig:User Inputs. In addition, the

‘Outputs’ block saves the satellite state vector in both the global and body reference

frames as depicted in Figure B.39.

B.4.1 Breakdown of Output Subsystems. Although Figure B.39 shows the

general layout of how the satellite state vector is saved, three of subsystems internal to

this process are also detailed to fully illustrate how the ‘Outputs’ block of Figure B.1

operates.

163

F
igu

re
B

.33:
O

verv
iew

of
Q

u
atern

ion
U

p
d
ate

164

) 4 tl- J 3 II> I 1st 3 Quaternions (3x1)

1
.. 14th Quaternion (1x1) Rate of 1st 3 Quaternions (3x1)

3 1st 3 Quaternions

Angular Rates (3x1)
Find Rate of 1st 3 Quaternions

1 I " .. I Angular Rates (3x1)
4th Quaternion

Rate of 4th Quaternion

c__--,;"-l .. ~l1st 3 Quaternions (3x1)

Find Rate of 4th Ouatemion

F
igu

re
B

.34:
U

p
d
ate

1
st

T
h
ree

Q
u
atern

ion
s

165

3

1st 3 Quaternions
(3x1)

~2~
4th Quaternion

(1x1)

Skew Matrix

[3x3]

3 3

Quaternions
(3x1)

Figure B.35: Update 4th Quaternion

166

(/)
c
0

(') .E x <n Q)
~ -ro

:::J
a

F
igu

re
B

.36:
O

verv
iew

of
A

n
gu

lar
R

ate
U

p
d
ate

167

J" ~I Torque (3x1)

3
Rate of Change of Angular Rates (3x1)

J ~ ~~Angular Rates (3x1)

Angular Rates (3x1)1

Find Rate of Angular Rates

F
igu

re
B

.37:
U

p
d
ate

R
ate

of
A

n
gu

lar
R

ates

168

3

I
[3x3] ~~ 1 3

• Multiply
~

Torque (3x1)
B [3x3]

Product
I

Skew Matrix

~ L_
[3x3] [3x3]

- I Matrix 1 3

Multiply
....-.J

I
3

3

~ ~·" ~-

Mass Moment
of Inertia

F
igu

re
B

.38:
U

ser
In

p
u
ts

169

L)----l

Clock

1-DT(u)

ld_
1-D Lookup
Velocity (i)

1-D Lookup

Velocity Ul

1-D Lookup
Velocity (k)

1-D Lookup
Target Posrtion (k)

3

User Inputs

Desired Velocity in
Global Frame (3x1)

Determine Desired Values

by the current time

3 ~L1.___
Target Position in Global Frame (3x1)

Desired Relative
Position in

Global Frame

Desired Relative

Velocity in
Global Frame

F
igu

re
B

.39:
O

u
tp

u
ts

O
verv

iew

170

Translational States (6x1)

l - ' _ ~I State Vector (13x1) Quaternions (4x1)

Angular Rates (3x1)

Split States

States_GiobaiFrame

Rotate from Global
Frame to Body Frame

Current Translational States in Global Frame (6x1)

CurrentTranslational States in Body Frame (6x1)

Quaternions (4x1)

F
igu

re
B

.40:
R

otate
T

ran
slation

al
S
tate

In
form

ation
to

S
atellite

B
o
d
y

F
ram

e

171

Use Current Quaternions to Create a Rotation Matrix to take
Values from the Global Frame to the Body Frame

Transpose 1st 3
Quaternions

1st 3 Quaternions

4th Quaternion

This Diagram Should Read:
R = [(q_ 4'2- q'T*q)*l + 2*q*q' T- 2*q_ 4*skew(q)]

*Let q = 1st 3 Quaternions in this equation

Skew Matrix

Identity
Matrix

[3x3]

[3x3]

F
igu

re
B

.41:
R

otation
M

atrix
to

R
otate

In
form

ation
from

G
lob

al
F

ram
e

to
B

o
d
y

F
ram

e

172

Rotate Body Frame
to Global Frame

Use Current Quaternions to Create a Rotation Matrix to take
Values from the Body Frame to the Global Frame

l •1 Quaternions (4x1) Rotation Matrix from Global Frame to Body Frame (3x3)

3 Position in the Body Frame

3
Velocity in the Body Frame

I •• •10
3

Gain

States in Body Frame
(6x1)

F
igu

re
B

.42:
S
kew

M
atrix

173

Skew Matrix

This subsystem takes a (3 x 1) Vector and outputs its Skew Matrix representation

3

AI~

Constant Create 3x3 Matrix

Figure B.43: Split State Vector

174

Appendix C. Code for Optimization of Gains

This appendix serves to include the MATLAB R© scripts that were used to optimize

the gain values used throughout the control algorithm. These scripts are included to

provide one with an in-depth understanding of how this controller was developed, and

to serve as a launching point for future work. Specifically this code could be used to

determine optimal values for this controller under different circumstances.

C.1 Script to Optimize LQR Weights

The following code is titled ‘SPHERES LQR TradeStudy.m’ and is included

below for reference within this thesis. This code was used to determine the desired

weights for the LQR. Anyone wishing to modify the weights for different criterion

should consider working from this code.

Listing C.1: Appendix3/SPHERES LQR TradeStudy.m

1 %%%%%%%%%%%%%% SPHERES LQR Weighting Trade Study %%%%%%%%%%%%%%%%%

%

% Trade Study for 1-D Model of SPHERES Bang -Bang Controller

%

% Author: Sam Barbaro ENY -3 26 Oct 2011

6 %

% Purpose: This script feeds constants & variables into the

% simulation SPHERES_1D_Model_Relative_LQR.mdl for various

% weighting ratios of Q & R and then records how the percent

% overshoot and settling time of the relative position & velocity

11 % errors change.

%

% Model: This simulation considers the thrusters numbered 0, 1, 6,

% & 7 as they are the ones that when coupled translate SPHERES in

% the X-axis and rotate SPHERES about its Y-axis.

16 %

%%

175

clc; clear; close all

21 %% User Variables (CHECK BEFORE EACH RUN)

%%

%%%%%%%%%%%%%%%%%%%%% USER MAKES CHANGES HERE %%%%%%%%%%%%%%%%%%%%

%%

26 % Set Initial Conditions

Pos_0 = 0; % initial relative position of SPHERES [m]

Vel_0 = 0; % initial relative velocity of SPHERES [m/s]

Initial = [Pos_0; Vel_0]; % Simulation input for State Space

31 % Determine Basic Velocity Path

Vel_Des = .2; % desired relative velocity [m/s]

Vel_Time = 1; % time at which velocity is commanded [sec]

% Weighting Conditions

36 PosWght = 5;

VelWght = .001:.001:1;

FuelWght = .3;

% Find length of the weighting condition that is changing

41 dim = length(VelWght);

% Set constant weighting conditions to same length as the

% variable weighting condition

Q1 = PosWght .*ones(1,dim);

46 Q2 = VelWght .*ones(1,dim);

R1 = FuelWght .*ones(1,dim);

% Label which weighting condition is changing

% var = 'Position Weight ';

51 var = 'Velocity Weight ';

% var = 'Control Weight ';

176

% rat = 'Position/Velocity ';

% rat = 'Velocity/Position ';

56 rat = 'Velocity/Control ';

idw = Q2./R1; % identify how weight ratio changes

%%

61 %%%%%%%%%%%%%%%%%%%%% END TYPICAL USER CHANGES %%%%%%%%%%%%%%%%%%%

%%

%% Constants

%%

66 % Mass Moments of Inertia

Eye = [1 0 0; 0 1 0; 0 0 1]; % Identity Matrix

MOI_Wet = [2.30e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.42e-2 -2.54e-5;% SPHERES MOI w/ full tank

-2.95e-4 -2.54e-5 2.14e -2;];

71 MOI_Dry = [2.19e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.31e-2 -2.54e-5;% SPHERES MOI w/empty tank

-2.95e-4 -2.54e-5 2.13e -2;];

InMOI_Wet = inv(MOI_Wet); % shorthand

InMOI_Dry = inv(MOI_Dry); % shorthand

76 OneD_MOI_Wet = MOI_Wet (2,2); % MOI used for 1-D example

OneD_MOI_Dry = MOI_Dry (2,2); % MOI (dry) used for 1-D

% Mass of SPHERES

Mass_Wet = 4.16; % SPHERES mass with fuel in [Kg]

81 Mass_Dry = 3.55; % SPHERES mass without fuel in [Kg]

% Thruster Information

F = 0.11; % force of individual thruster [N]

l = 0.193; % length between thrusters [m]

% Define Dead Zone Range

86 % these values ensure translation stays

% w/in 1 cm of the desired value

High = 0.002; % values above this number aren 't reset

177

Low = 0.002; % values below this number aren 't reset

% SPHERES Plant

91 A = [0 1; 0 0];

Bu = [0;1/ Mass_Wet];

C = eye(2); % assumes all states provided by estimator

D = zeros (2,1);% control doesn 't directly affect output

96 %% Develop LQR & Simulate

%%%%% Test Run to Help Debug ... assumes only one case %%%%%%%%%%%%%

% Q = [5 0; 0 0.09]; R = 0.3;

% [K,S,E] = lqr(A,Bu,Q,R); % linear quadratic controller

101 % sim('SPHERES_1D_Model_Relative_LQR1 ');

% %%

% plot(simout1.time (:,1),simout1.signals.values (:,1) ,'r',...

% simout1.time (:,1),simout1.signals.values (:,2) ,'b');

% %title('Error vs. Time for 1-D SPHERES Model with LQR Control ');

106 % xlabel('Time [sec]'); ylabel('[m] or [m/sec]');

% legend('Position ','Velocity ','Location ','NorthEast ');

% set(gca ,'fontsize ',19)

%

%%

111

PO = zeros(dim ,2); %

Ts = zeros(dim ,2); % pre -set variables for speed

Tbrn = zeros(dim ,1); %

116 % Test Each Case of Weights Considered for LQR Controller

for ctr = 1:dim;

Q = [Q1(ctr) 0; 0 Q2(ctr)];

% build Q matrix

R = R1(ctr); % build R matrix

121 [K,¬,¬] = lqr(A,Bu,Q,R); % linear quadratic controller

sim('SPHERES_1D_Model_Relative_LQR1 ');

% run SPHERES simulation

178

% Find the Percent Overshoot

PO(ctr ,1) = 100* max(simout1.signals.values (:,1));

126 PO(ctr ,2) = 100* max(-simout1.signals.values (:,2));

% Find the Settling Time (2% Criteria)

if PO(ctr ,1) < 2;

Ts(ctr ,1) = 0;

else %PO(ctr ,1) ≥ 2;

131 index1 =find(simout1.signals.values (:,1)≥.02,1,'last');

Ts(ctr ,1) =simout1.time(index1 ,1);

end

if PO(ctr ,2) < 2;

index2 =find(simout1.signals.values (:,1)≥.02,1,'last');

136 if isempty(index2) == 1

Ts(ctr ,2) = 0;

else

Ts(ctr ,2) = simout1.time(index2 ,1);

end

141 else %PO(ctr ,2) ≥ 2;

index2 =find(simout1.signals.values (:,2)≤ -.02,1,'last');

Ts(ctr ,2) = simout1.time(index2 ,1);

end

% Find the Amount of Time the Thrusters are Firing

146 Tbrn(ctr) = sum(abs(simout1.signals.values (:,3)))*...

(simout1.time (2,1)-simout1.time (1,1));

end

%% Format Results

151

% Plotting commands have been removed

C.2 Script to Optimize τ

The following code is titled ‘SPHERES Tau TradeStudy.m’ and is included be-

low for reference within this thesis. This code was used to determine the desired

179

look-ahead gain for the bang-bang controller. Anyone wishing to modify this gain for

different criterion should consider working from this code.

Listing C.2: Appendix3/SPHERES Tau TradeStudy.m

%%%%% SPHERES Translation Controller 1-D Phase Plane Analysis %%%%%

%

3 % 1-D Model for SPHERES Bang -Bang & LQR Controller

%

% Author: Sam Barbaro ENY -3 25 Oct 2011

%

% Purpose: This script feeds variables into the

8 % 'SPHERES_1D_Model_Relative_LQR_v2 ' simulation and formats

% information from the simulation into a plot for phase plane

% analysis

%

% Model: This simulation considers the thrusters numbered 0, 1, 6,

13 % & 7 as they are the ones that when coupled translate SPHERES in

% the X-axis and rotate SPHERES about its Y-axis.

%

%%

18 clc; clear; close all

%% User Variables

%%%%%%%%%%%%%%%%%% USER MAKES CHANGES HERE %%%%%%%%%%%%%%%%%%%%%%%

% Set Initial Conditions

23 Pos_0 = 0; % initial relative position of SPHERES [m]

Vel_0 = 0; % initial relative velocity of SPHERES [m/s]

Initial = [Pos_0; Vel_0]; % Simulation input for State Space

% Determine Basic Velocity Path

28 Vel_Des_Low = .2; % desired relative velocity (low end) [m/s]

% Weighting Conditions

180

Q = blkdiag (1 ,0.018); % state weighting matrix

R = .06; % control weighting matrix

33 TAU = 1:.1:3; % look -ahead weight

% TAU = 2;

% Simulation Parameters

StepSize = 0.005; % time step of simulation [sec]

38 Duration = 45; % length of simulation [sec]

%%%%%%%%%%%%%%%%%% END TYPICAL USER CHANGES %%%%%%%%%%%%%%%%%%%%%%

%% Constants

43 %% Load SPHERES Constants

%%

% Mass Moments of Inertia

Eye = [1 0 0; 0 1 0; 0 0 1]; % Identity Matrix

MOI_Wet = [2.30e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

48 9.90e-5 2.42e-2 -2.54e-5;% SPHERES MOI w/ full tank

-2.95e-4 -2.54e-5 2.14e -2;];

MOI_Dry = [2.19e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.31e-2 -2.54e-5;% SPHERES MOI w/empty tank

-2.95e-4 -2.54e-5 2.13e -2;];

53 InMOI_Wet = inv(MOI_Wet); % shorthand

InMOI_Dry = inv(MOI_Dry); % shorthand

OneD_MOI_Wet = MOI_Wet (2,2); % MOI used for 1-D example

OneD_MOI_Dry = MOI_Dry (2,2); % MOI (dry) used for 1-D

58 % Mass of SPHERES

Mass_Wet = 4.16; % SPHERES mass with fuel in [Kg]

Mass_Dry = 3.55; % SPHERES mass without fuel in [Kg]

% Thruster Information

F = 0.11; % force of individual thruster [N]

63 l = 0.193; % length between thrusters [m]

% Preditiction Term

tau = 2; % determine slope of switch line (M=-1/tau)

181

% Define Dead Zone Range

% these values ensure translation stays

68 % w/in 1 cm of the desired value

High = 0.001; % values above this number aren 't reset

Low = 0.001; % values below this number aren 't reset

73 %% SPHERES Plant

A = [0 1; 0 0];

Bu = [0;1/ Mass_Wet];

C = eye(2); % assumes all states provided by estimator

D = zeros (2,1);% control does not directly affect output

78

%% Run Simulation

% Develop LQR

[K,¬,¬] = lqr(A,Bu,Q,R); % linear quadratic controller

83 time = 0: StepSize:Duration;

position = zeros(length(time),length(TAU));

velocity = zeros(length(time),length(TAU));

control = zeros(length(TAU) ,1);

x = -1:.1:1;

88 S = zeros(length(x),length(TAU));

for ctr = 1: length(TAU)

%Simulate the Closed Loop system with Non -Linearities included

tau = TAU(ctr);

93 sim('SPHERES_1D_Model_Relative_LQR_v2 ');

position(:,ctr) = simout1.signals.values (:,1);

velocity(:,ctr) = simout1.signals.values (:,2);

control(ctr ,1) = sum(abs(simout1.signals.values (:,3)));

%Make Switch Line

98 var = -K(1)/K(2)/tau.*x;

S(:,ctr) = var ';

end

182

%% Format Plots

C.3 Script to Optimize Kd

The following code is titled ‘SPHERES Trade Study Quaternion.m’ and is in-

cluded below for reference within this thesis. This code was used to determine the

derivative gain for the quaternion controller. Anyone wishing to modify this gain for

different criterion should consider working from this code.

Listing C.3: Appendix3/SPHERES Trade Study Quaternion v4.m

%%%%%%%%%%% SPHERES Quaternion PD weight Trade Study %%%%%%%%%%%%%

%

3 % Trade Study for rotation of 3-D Model of SPHERES w/Bang -Bang

% Controller

%

% Author: Sam Barbaro ENY -3 20 Nov 2011

%

8 % Purpose: This script feeds constants & variables into the

% simulation SPHERES_3D_Model_Rotation_v2.mdl for various values

% of Kd and then records the Peak Value , Settling Time , & Control

% Usage for each ratio in order to highlight which value provides

% the most desireable results.

13 %

% Model: This simulation considers all thrusters number 0-11, but

% only uses the thrusters to change SPHERES orientation as opposed

% to its position in inertial space.

%

18 %%

%% Clear Data and Load Constants

clc; clear; close all

% SPHERES_Constants

183

23 % global MOI_Wet MOI_Dry InMOI_Wet InMOI_Dry F l

%%

%%%%%%%%%%%%%%%%%%% USER MAKES CHANGES HERE %%%%%%%%%%%%%%%%%%%%%%

%%

28

% Input Desired Roll Pitch Yaw Data for Simulation

Theta_0 = [0;0;0]; % initial euler angles [rad]

% (roll ,pitch ,yaw)

Omega_0 = [0;0;0] '; % initial euler rates [rad/s]

33 Theta_F = [0; 0; 10*pi /180];

Step_Time = 5; % used signal change to new Theta [sec]

% Convert Roll , Pitch , Yaw Data into Quaternions

Quat_0 = RPY2Q(Theta_0 '); % [nx4] matrix

Quat_F = RPY2Q(Theta_F '); % [nx4] matrix

38 Quat_0 = Quat_0 '; % [4xn] matrix

Quat_F = Quat_F '; % [4xn] matrix

% Weighting Conditions

Gain_P = 1; % Proportional Gain

Gain_D = 0.31:.02:0.41; %0.33:0.01:0.37; % Derivative Gain

43 % Find length of the weighting condition that is changing

% len = length(Gain_P);

len = length(Gain_D);

% Set constant weighting conditions to same length as one the

% variable weighting condition

48 Kp_array = Gain_P .*ones(1,len);

Kd_array = Gain_D .*ones(1,len);

% Label which gain condition is changing

% var = 'Proportional Gain ';

var = 'Derivative gain';

53 idw = Kd_array;

%%

%%%%%%%%%%%%%%%%%%% END TYPICAL USER CHANGES %%%%%%%%%%%%%%%%%%%%%

%%

184

58

%% Constants

%%

% Mass Moments of Inertia

Eye = [1 0 0; 0 1 0; 0 0 1]; % Identity Matrix

63 MOI_Wet = [2.30e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.42e-2 -2.54e-5;% SPHERES MOI w/ full tank

-2.95e-4 -2.54e-5 2.14e -2;];

MOI_Dry = [2.19e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.31e-2 -2.54e-5;% SPHERES MOI w/empty tank

68 -2.95e-4 -2.54e-5 2.13e -2;];

InMOI_Wet = inv(MOI_Wet); % shorthand

InMOI_Dry = inv(MOI_Dry); % shorthand

OneD_MOI_Wet = MOI_Wet (2,2); % MOI used for 1-D example

OneD_MOI_Dry = MOI_Dry (2,2); % MOI (dry) used for 1-D

73

% Mass of SPHERES

Mass_Wet = 4.16; % SPHERES mass with fuel in [Kg]

Mass_Dry = 3.55; % SPHERES mass without fuel in [Kg]

% Thruster Information

78 F = 0.11; % force of individual thruster [N]

l = 0.193; % length between thrusters [m]

% Define Dead Zone Range

% these values ensure translation stays

% w/in 1 cm of the desired value

83 High = 0.002; % values above this number aren 't reset

Low = 0.002; % values below this number aren 't reset

%%

%% Run Simulation in loop

88 % MOI = 2e-2*eye(3,3); % override to principal axis for testing

% IMOI = inv(MOI);

MOI = MOI_Wet;

IMOI = InMOI_Wet;

185

93 %%%%%%%%%%%%% Sample to Find Optimization Range %%%%%%%%%%%%%%%%%%

%% Show how varying Kd affects the responses of Quaternion Error

Kd = .3;

Kp = 1; sim('SPHERES_3D_Model_Rotation_Study_v2 ');

leng = length(Quaternion_Error.signals.values (:,1));

98 % find sim dimension

QE = zeros(leng ,len); T = QE; str = cell(len ,1);

% preset for speed

z = zeros(leng ,1); % to plot error desire

for ctr = 1:1: len

103 Kp = Kp_array(ctr);

Kd = Kd_array(ctr);

sim('SPHERES_3D_Model_Rotation_Study_v2 ');

QE(:,ctr) = Quaternion_Error.signals.values (:,1);

T(:,ctr) = Quaternion_Error.time (:,1);

108 U = F*l*(sum(abs(Rotation_Sign.signals.values (:,1))) + ...

sum(abs(Rotation_Sign.signals.values (:,2))) + ...

sum(abs(Rotation_Sign.signals.values (:,3))));

str{ctr ,1} = sprintf('K_d = %2.3f Torque = %2.3f Nm',Kd ,U);

end

113 figure (4)

plot(T,QE ,T(:,1),z,'--');

legend(str ,'Desired Error'); legend('location ','southeast ');

ylabel('1^s^t Quaternion Error','fontsize ' ,22);

xlabel('Time [sec]','fontsize ' ,22)

118 set(gca ,'fontsize ' ,19)

% Show Response of Optimized Quaternion Controller

Kp = 1;

Kd = 0.343;

123 sim('SPHERES_3D_Model_Rotation_Study_v2 ');

%Plot Quaternion Error

%Plot Actual Quaternion Values vs. Desired Quaternion Values

% Plotting command have been removed

186

Appendix D. Code for Dead-Zone Affects

The following code is titled ‘DeadZoneStudy.m’ and was used to illustrate the re-

lationship between system accuracy and fuel consumption as the bandwidth of the

dead-zone non-linearity was changed. This script is included below for reference within

this thesis. Anyone wishing to understand the affects of the dead-zone bandwidth on

different paths should consider this studying a suitable starting point.

Listing D.1: Appendix3/DeadZoneStudy.m

%%%%%%%%%%%%%%%%%%%%%% SPHERES SIMULATION %%%%%%%%%%%%%%%%%%%%%%%%

%%%%%%%%% Accuracy vs. Fuel Consumption for Dead -Zone %%%%%%%%%%%%

3 %

% Master Script to model speed & path algorithms for MIT 's SPHERES

% program

%

% Author: Sam Barbaro AFIT ENY -3 03 Feb 2012

8 %

% Purpose: This script feeds constants & variables into the

% simulation SPHERES_3D_Simulation.mdl for various paths that can

% be set by the user. This script then plots the comparison of

% how well the states actually met the desired values.

13 %

% Model: This simulation considers all thrusters number 0-11, and

% is capable of changing SPHERES orientation as well as its

% position in global space.

%

18 % Programs Called: SPHERES_3D_Simulation_v3.mdl , skew.m,

% datainterp_v3.m

%

%%

23 clc; clear; close all;

%% Plan Desired Path and Speeds for SPHERES &

187

%% Set Initial Conditions

%%

28 %%%%%%%%%%%%%%%%%%%% USER MAKES CHANGES HERE %%%%%%%%%%%%%%%%%%%%%

%%

% Set Range of Dead -Zone Bandwidths to Consider

Dband_Low = 0.0001; % Narrowest Deadzone Bandwidth

33 Dband_High = 0.1; % Widest Deadzone Bandwidth

Pts = 200; % Number of data points to consider

% Define Path of SPHERES & Set Simulation Parameters

PATH = load('results.mat','time','Position_Ch_gf ' ,...

38 'Quat_0 ','velo','slpint ','Initial ','Point ');

Duration = PATH.time(end);

StepSize = PATH.time (5) - PATH.time (4);

% Set SPHERES Initial Rates

43 Omega_i = [0;0;0]; % initial euler rates [rad/s]

%%

%%%%%%%%%%%%%%%%%%% END TYPICAL USER CHANGES %%%%%%%%%%%%%%%%%%%%%

%%

48

%% Load SPHERES Constants

%%

% Mass Moments of Inertia

Eye = [1 0 0; 0 1 0; 0 0 1]; % Identity Matrix

53 MOI_Wet = [2.30e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.42e-2 -2.54e-5;% SPHERES MOI w/ full tank

-2.95e-4 -2.54e-5 2.14e -2;];

MOI_Dry = [2.19e-2 9.90e-5 -2.95e-4;% relative to COM [kg*m^2]

9.90e-5 2.31e-2 -2.54e-5;% SPHERES MOI w/empty tank

58 -2.95e-4 -2.54e-5 2.13e -2;];

InMOI_Wet = inv(MOI_Wet); % shorthand

InMOI_Dry = inv(MOI_Dry); % shorthand

188

OneD_MOI_Wet = MOI_Wet (2,2); % MOI used for 1-D example

OneD_MOI_Dry = MOI_Dry (2,2); % MOI (dry) used for 1-D

63

% Mass of SPHERES

Mass_Wet = 4.16; % SPHERES mass with fuel in [Kg]

Mass_Dry = 3.55; % SPHERES mass without fuel in [Kg]

% Thruster Information

68 F = 0.11; % force of individual thruster [N]

l = 0.193; % length between thrusters [m]

% SPHERES Plant

A = [0 0 0 1 0 0; 0 0 0 0 1 0; 0 0 0 0 0 1;...

0 0 0 0 0 0; 0 0 0 0 0 0; 0 0 0 0 0 0;];

73 Bu = [0 0 0; 0 0 0; 0 0 0; ...

1/ Mass_Wet 0 0; 0 1/ Mass_Wet 0; 0 0 1/ Mass_Wet];

C = eye(6); % assumes all states provided by estimator

D = zeros (6,3); % control does not directly affect output

% Path & Speed Controller Gain Information

78 Kd = 0.352; % Gain for Quaternion Controller

Q1 = 1; % "Q" Weight for Position in LQR Controller

Q2 = 0.018; % "Q" Weight for Velocity in LQR Controller

R = 0.06; % "R" Weight for LQR Controller

Q = blkdiag(Q1,Q1,Q1,Q2,Q2,Q2); % "Q" Weighting Matrix

83 R = blkdiag(R,R,R); % "R" Weighting Matrix

[K,¬,¬] = lqr(A,Bu,Q,R);% LQR gain

% Preditiction Term

tau = 2; % determine slope of switch line (M=-1/tau)

% Define Dead Zone Range

88 BW = linspace(Dband_Low ,Dband_High ,Pts);

% Set Rate Limits

Rate_T = .10; % S/C will not exceed this speed [m/s]

Rate_R = deg2rad (6); % S/C will not spin faster than this[deg/s]

%%

93

%% Run Simulation

%%%%%%%%%%%%%%%%%%%% SPHERES Inspector %%%%%%%%%%%%%%%%%%%%%%%%%%%

189

Quat_0 = PATH.Quat_0; % initial quaternions [dimensionless]

slpint = PATH.slpint;

98 Omega_0 = deg2rad(Omega_i);% Convert to [rad/s] (3x1)

Initial = PATH.Initial;

% Load Desired Data into Look -Up Tables (Global Frame)

Des_Vel_X = PATH.velo (:,1);% Desired Velocity on X-axis

Des_Vel_Y = PATH.velo (:,2);% Desired Velocity on Y-axis

103 Des_Vel_Z = PATH.velo (:,3);% Desired Velocity on Z-axis

Targ_Pos_X = PATH.Position_Ch_gf (:,1);

Targ_Pos_Y = PATH.Position_Ch_gf (:,2);

Targ_Pos_Z = PATH.Position_Ch_gf (:,3);

Point = PATH.Point;

108 % Define Mass Moment of Inertia Matrix

MOI = MOI_Wet; % MMOT when SPHERES ' fuel tank is full

IMOI = InMOI_Wet; % Inverse of MMOI of SPHERES when full

% Run Simulation

DZBWf = [10 1 .1];

113 DZBWt = [1 1 1];

Fuel = zeros(length(BW) ,3);

Error= Fuel; E_pos = Fuel; E_vel = Fuel; E_ori = Fuel;

for CASE = 1:3

for ctr = 1: length(BW);

118 High_f = DZBWf(CASE)*BW(ctr)/2;

Low_f = -DZBWf(CASE)*BW(ctr)/2;

High_t = DZBWt(CASE)*BW(ctr)/2;

Low_t = -DZBWt(CASE)*BW(ctr)/2;

sim('Simulation ');

123 err = Errors.signals.values (: ,1:10);

E_pos(ctr ,CASE) = sum(sqrt(sum(err (: ,1:3) .^2,2)));

E_ori(ctr ,CASE) = sum(Errors.signals.values (: ,11));

Fuel(ctr ,CASE) = sum(Thrust.signals.values (:,1));

Error(ctr ,CASE) = E_pos(ctr ,CASE)+E_ori(ctr ,CASE);

128 end

end

190

%% Normalize Data

Max_E = max(Error (:,2));

133 Error_n = Error./ Max_E;

Max_F = max(Fuel (:,2));

Fuel_n = Fuel./ Max_F;

figure (1)

138 plot(BW ,Fuel_n (:,1),'b',BW ,Error_n (:,1),'--b' ,...

BW ,Fuel_n (:,2),'g',BW ,Error_n (:,2),'--g' ,...

BW ,Fuel_n (:,3),'r',BW ,Error_n (:,3),'--r');

xlabel('Dead -zone of Control Torque ','Fontsize ' ,22);

ylabel('Error & Fuel Consumption ','Fontsize ' ,22);

143 legend('Fuel use when DZ_f/DZ_t = 10' ,...

'Error when DZ_f/DZ_t = 10' ,...

'Fuel use when DZ_f/DZ_t = 1' ,...

'Error when DZ_f/DZ_t = 1' ,...

'Fuel use when DZ_f/DZ_t = 0.1' ,...

148 'Error when DZ_f/DZ_t = 0.1');

set(gca ,'fontsize ' ,19);

figure (2)

plot(Fuel_n ,Error_n);

153 xlabel('Fuel Consumption ','Fontsize ' ,22);

ylabel('Error','Fontsize ' ,22);

legend('DZ_f/DZ_t = 10','DZ_f/DZ_t = 1','DZ_f/DZ_t = 0.1');

set(gca ,'fontsize ' ,19);

191

Bibliography

1. Miller, D., “SPHERES CAD,” 2011.

2. Miller, D., Saenz-Otero, A., Wertz, J., Chen, A., Berkowski, G., Brodel, C.,
Carlson, S., Carpenter, D., Chen, S., Cheng, S., Feller, D., Jackson, S., Pitts, B.,
Perez, F., Szuminski, J., and Sell, S., “SPHERES: A Testbed For Long Duration
Satellite Formation Flying In Micro-Gravity Conditions,” .

3. Cobb, R., “Spacecraft Systems Engineering: Attitude Determination & Control,”
2010.

4. Slotine, J.-J. E. and Li, W., Applied Nonlinear Control , Prentice Hall Interna-
tional Inc., Up-Saddle River, New Jersey, 1991.

5. Hilstad, M. O., Enright, J. P., Richards, A. G., and Mohan, S., “The SPHERES
Guest Scientist Program,” 2009.

6. Center, A. F. D., Air Force Basic Doctrine, Air University Press, Maxwell AFB,
Alabama, 2003.

7. Selding, P. B. D., “Failed Telecommunications Satellite Drifts Out of Control,”
23 January 2009.

8. Clark, S., “Air Force recoups costs to save stranded AEHF satellite,” August 17,
2011 June 14, 2011.

9. Ray, J., “Air Force Satellite’s Epic Ascent Should Finish Soon,” 2011.

10. Hooper, R., “Learn About Robots: Robots in Space,” 14 Jan, 2012.

11. Stansbery, E., “Orbital Debris Education Package,” 2009.

12. Stansbery, E., “NASA Orbital Debris FAQs,” 2009.

13. Aeronautics, N. and Administration, S., “Satellite Collision Leaves Significant
Debris Clouds,” 2009.

14. Oleksyn, V., “What a Mess! Experts ponder space junk problem,” 2009.

15. Baucom, D. R., “Missile Defense Milestones: 1944-1997,” .

16. Campbell, J. W., “Using Lasers in Space: Laser Orbital Debris Removal and
Asteroid Deflection,” 2000.

17. Rogers, M. E., “Lasers in Space: Technological Options for Enhancing U.S. Mili-
tary Capabilities,” 1997.

18. Goodman, J. L., “History of Space Shuttle Rendezvous,” 2011.

19. Goodman, J. L., “History of Space Shuttle Rendezvous and Proximity Opera-
tions,” Journal of Spacecraft and Rockets , Vol. 43, No. 5, 2006, pp. 944–958.

192

20. Clohessy, W. H. and Wiltshire, R. S., “Terminal Guidance System for Satellite
Rendezvous,” Journal of the Aerospace Sciences , Vol. 27, No. 9, 1960, pp. 653–
659.

21. earl Park, H., Park, S.-Y., and Choi, K.-H., “Satellite Formation Reconfigura-
tion and Station-Keeping Using State-Dependent Riccati Equation Technique,”
Aerospace Science and Technology , 2010.

22. Chien, S., Sherwood, R., Rabideau, G., Castano, R., Davies, A., Burl, M., Knight,
R., Stough, T., Roden, J., Zetocha, P., Wainwright, R., Klupar, P., Gaasbeck,
J. V., Cappelaere, P., and Oswald, D., “The Techsat-21 Autonomous Space Sci-
ence Agent,” 2002.

23. Directorate, S. V., “XSS-11 Micro Satellite Fact Sheet,” 2005.

24. “DART Fact Sheet,” 2006.

25. “On-Orbit Mission Updates of DARPA’s Orbital Express,” 2007.

26. Fejzic, A., “Development of Control and Autonomy Algorithms for Docking to
Complex Tumbling Satellites,” 2008.

27. Tweddle, B. E., “Computer Vision Based Navigation for Spacecraft Proximity
Operations,” 2010.

28. Sellers, J. J., Understanding Space: An Introduction to Astronautics , Mc-Graw-
Hill, New York, 3rd ed., 2005.

29. Bedford, A. and Fowler, W., Engineering Mechanics: Dynamics , Pearson Prentice
Hall, Upper Saddle River, New Jersey, 4th ed., 2005.

30. Bate, R. R., Mueller, D. D., and White, J. E., Fundamentals of Astrodynamics ,
Dover Publications, Inc., New York, 1971.

31. Strang, G., Linear Algebra and its Applications , Thomson, Brooks/Cole, CA, 4th
ed., 2006.

32. Wie, B., Space Vehicle Dynamics and Control Second Edition, American Institute
of Aeronautics and Astronautics, Inc., USA, 2nd ed., 2008.

33. Hall, C. D., Spacecraft Attitude Dynamics , 2003.

34. Sidi, M. J., Spacecraft Dynamics & Control: A Practical Engineering Approach,
Cambridge University Press, New York, USA, 1st ed., 1997.

35. Levine, W. S.

36. Ogata, K., Modern Control Engineering , Prentice Hall, Boston, 5th ed., 2010.

37. Nise, N. S., Control Systems Engineering , John Wiley & Sons, Inc., U.S.A., 5th
ed., 2008.

38. Arora, J. S., Introduction to Optimum Design, Elsevier Academic Press, Boston,
2nd ed., 2004.

193

39. Burl, J. B., Linear Optimal Control: H2 and H[infinity] Methods , Addison-Wesley
Longman, Inc., 1999.

40. Vincent, T. L. and Grantham, W. J., Nonlinear and Optimal Control Systems ,
John Wiley & Sons, Inc., New York, 1997.

194

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704–0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing
data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or
any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate
for Information Operations and Reports (0704–0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202–4302. Respondents should be aware that
notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.
1. REPORT DATE (DD–MM–YYYY)
22-03-2012

2. REPORT TYPE
Master’s Thesis

3. DATES COVERED (From — To)
October 2010 — March 2012

4. TITLE AND SUBTITLE
Satellite Relative Motion Control for MIT’s SPHERES
Program

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)

Barbaro, Samuel P., Second Lieutenant, USAF

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Air Force Institute of Technology
Graduate School of Engineering and Management (AFIT/ENY)
2950 Hobson Way
WPAFB OH 45433-7765

8. PERFORMING ORGANIZATION REPORT
NUMBER
AFIT/GA/ENY/12-M02

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Professor David W. Miller
37-327
77 Massachusetts Ave
Cambridge, MA 02139

Miller, David W., PhD.
millerd@mit.edu
(617) 253-3288

10. SPONSOR/MONITOR’S ACRONYM(S)
MIT

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION / AVAILABILITY STATEMENT
APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

13. SUPPLEMENTARY NOTES This material is declared a work of the U.S. Government and is not subject to
copyright protection in the United States.
14. ABSTRACT

Autonomous formation flight concepts and algorithms have great potential to revolutionize spacecraft operations
enabling missions to perform autonomous docking, in-space refueling, in-space robotic assembly, and space
debris removal. Such tasks require the implementation of speed and path control algorithms to maneuver
satellites along relative paths with specified rates along those paths. This thesis uses MATLAB® and SIMULINK®
to design and simulate a control algorithm capable of providing relative speed and path control between satellites
with a pointing error of less than two degrees, a position error of less than two millimeters, and a millimeter per
second of velocity error. The enclosed research provides enhancements to Massachusetts Institute of
Technology's SPHERES (Synchronized Position Hold Engage Reorient Experimental Satellites) program, a
testbed for multi-object rendezvous and docking research. This control algorithm is to be used on-board the
International Space Station to allow MIT's SPHERES program to continue to provide a practical intermediate step
to develop, test, and validate autonomous formation spaceflight algorithms. Furthermore, the simulation tool used
to develop the control algorithm allows a greater community of control engineers to interact with SPHERES purely
in the MATLAB® development environment.

15. SUBJECT TERMS
Satellite, SPHERES, Relative Motion, Control, Formation, Spaceflight,

16. SECURITY CLASSIFICATION OF: 17. LIMITATION
OF ABSTRACT

UU

18. NUMBER
OF PAGES

212

19a. NAME OF RESPONSIBLE PERSON
Dr. Richard Cobb, Advisor

a.
REPORT

U

b.
ABSTRACT

U

c. THIS
PAGE

U

19b. TELEPHONE NUMBER (Include Area Code)
(937)255-3636, 4559
Richard.Cobb@afit.edu

Standard Form 298 (Rev. 8–98)
Prescribed by ANSI Std. Z39.18

